搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器

程学明 崔文宇 祝鲁平 王霞 刘宗明 曹丙强

引用本文:
Citation:

具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器

程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强

Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current

Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang
PDF
HTML
导出引用
  • 卤化物钙钛矿具有优异的电学和光学性能, 是光电子器件中理想的有源层候选材料, 特别是在高性能光探测方面显示出更具竞争力的发展前景, 其中全无机钙钛矿CsPbBr3因其良好的环境稳定性而被广泛关 注. 本文报道了一种具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 由于采用垂直 结构缩短了光生载流子的渡越距离, 器件具有超快的响应速度63 μs, 比传统平面MSM型光电探测器提高了两个数量级. 然后, 通过在p型CsPbBr3与Ag电极之间旋涂一层TiO2薄膜, 提升了界面光生载流子的分 离效率, 实现了钙钛矿薄膜与金属电极间的物理钝化, 从而大大降低了器件的暗电流, 在–1 V的偏压下暗电流只有–4.81×10–12 A. 此外, 该种垂直MSM型CsPbBr3薄膜光电探测器还具有线性动态范围大(122 dB)、探测率高(1.16×1012 Jones)和光稳定性好等诸多优点. 通过Sentaurus TCAD模拟发现, 电荷传输层可以选择性的阻挡载流子传输, 从而起到降低暗电流的作用, Sentaurus TCAD模拟结果与实验数据吻合, 揭示了电荷传输层降低器件暗电流的内在物理机制.
    Halide perovskites exhibit excellent electrical and optical properties and are ideal candidates for active layers in optoelectronic devices, especially in the field of high-performance photodetection, where they demonstrate a competitive advantage in terms of development prospects. Among them, the all-inorganic perovskite CsPbBr3 has received widespread attention due to its better environmental stability. It is demonstrated in this work that a vertical MSM-type CsPbBr3 thin-film photodetector has characteristics of fast response time and ultra-low dark current. The use of a vertical structure can reduce the transit distance of photo carriers, enabling the device to achieve a fast response time of 63 μs, which is two orders of magnitude higher than the traditional planar MSM-type photodetectors with a response time of 10 ms. Then, by spinning a charge transport layer between the p-type CsPbBr3 and Ag electrodes, effective separation of photocarriers at the interface is realized and physical passivation between the perovskite and metal electrodes is also achieved. Due to the superior surface quality of the spun TiO2 film compared with the NiOx film, and through Sentaurus TCAD simulations and bandgap analyses, with TiO2 serving as the electron transport layer, it effectively inhibits the transmission of excess holes in p-type CsPbBr3. Consequently, the electron transport layer TiO2 is more effective in reducing dark current than the hole transport layer NiOx, with a dark current magnitude of only –4.81×10–12 A at a –1 V bias. Furthermore, this vertical MSM-type CsPbBr3 thin-film photodetector also has a large linear dynamic range (122 dB), high detectivity (1.16×1012 Jones), and good photo-stability. Through Sentaurus TCAD simulation, it is found that the charge transport layer selectively blocks carrier transmission, thereby reducing dark current. The simulation results are in good agreement with experimental data, providing theoretical guidance for a more in-depth understanding of the intrinsic physical mechanisms.
      通信作者: 曹丙强, mse_caobq@ujn.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFC3700801)、济南市教育局(批准号: JNSX2023015)和济南市科技局(批准号: 202333042)资助的课题.
      Corresponding author: Cao Bing-Qiang, mse_caobq@ujn.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFC3700801), the Jinan Education Bureau, China (Grant No. JNSX2023015), and the Jinan Science and Technology Bureau, China (Grant No. 202333042).
    [1]

    Xu J, Li J, Wang H S, He C Y, Li J L, Bao Y N, Tang H Y, Luo H D, Liu X C, Yang Y M 2021 Adv. Mater. Interfaces 9 2101487Google Scholar

    [2]

    Zhang Y, Wu C Y, Zhou X Y, Li J C, Tao X Y, Liu B Y, Chen J W, Chang Y J, Tong G Q, Jiang Y 2023 Mater. Today Phys. 36 101179Google Scholar

    [3]

    Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 3337Google Scholar

    [4]

    Perumalveeramalai C, Zheng J, Wang Y, Guo H L, Pammi S. V. N., Mudike R, Li C B 2024 Chem. Eng. J. 492 152213Google Scholar

    [5]

    Wang Y Z, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K 2022 Mater. Horiz. 9 220Google Scholar

    [6]

    Zheng J B, Yang D Z, Guo D C, Yang L Q, Li Ji, Ma D G 2023 ACS Photonics 10 1382Google Scholar

    [7]

    Wang H D, Huang H X, Zha J J, et al. 2023 Adv. Opt. Mater. 11 2301508Google Scholar

    [8]

    Gong W Q, Tian Y Z, Yan J, Gao F, Li L 2022 J. Mater. Chem. C 10 7460Google Scholar

    [9]

    Qiao S, Liu J H, Wang R N, Guo L J, Wang S F, Pan A L, Pan C F 2023 Adv. Opt. Mater. 11 2300751Google Scholar

    [10]

    Li X, Xiang Y, Wan J X, Xiao Z X, Yuan H, Sun J, Liu Y F, Dai G Z, Yang J L 2022 Org. Electron. 101 106409Google Scholar

    [11]

    Zhu L P, Cheng X M, Wang A W, Shan Y S, Cao X L, Cao B Q 2023 Appl. Phys. Lett. 123 212105Google Scholar

    [12]

    Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J, Wang K Y 2023 ACS Nano 17 8411Google Scholar

    [13]

    Zhao Z E, Tang W B, Zhang S H, Ding Y C, Zhao X F, Yuan G L 2023 J. Phys. Chem. C 127 4846Google Scholar

    [14]

    王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强 2024 物理学报 73 058503Google Scholar

    Wang A W, Zhu L P, Shan Y S, Liu P, Cao X L, Cao B Q 2024 Acta Phys. Sin. 73 058503Google Scholar

    [15]

    Yan T T, Liu X Y, Zhang X Y, Hong E L, Wu L M, Fang X S 2023 Adv. Funct. Mater. 34 2311042Google Scholar

    [16]

    Saleem M I, Sulaman M, Batool A, Bukhtiar A, Khalid S 2023 Energy Technol. 11 2300013Google Scholar

    [17]

    Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar

    [18]

    Ahirwar P, Kumar R 2023 Chem. Phys. Lett. 810 140180Google Scholar

    [19]

    Bai T X Y, Wang S W., Bai L Y, Zhang K X., Chu C Y., Yi L X. 2022 Nanoscale Res. Lett. 17 69Google Scholar

    [20]

    Yun K R, Lee T J, Kim S K, Kim J H, Seong T Y 2022 Adv. Opt. Mater. 11 2201974Google Scholar

    [21]

    Mukhokosi E P, Maaza M 2022 J. Mater. Sci. 57 1555Google Scholar

    [22]

    Sathyanarayana S, Krishnan K N, Das B C. 2024 Phys. Rev. Appl. 21 044015Google Scholar

    [23]

    Cai J, Zhao T, Chen M M, Su J Y, Shen X M, Liu Y, Cao D W 2022 J. Phys. Chem. C 126 10007Google Scholar

    [24]

    Zhou H P, Chen M W, Liu C G, Zhang R, Li J, Liao S A, Lu H F, Yang Y P 2023 Discover Nano 18 11Google Scholar

    [25]

    Bhardwaj B, Bothra U, Singh S, Mills S, Ronningen T. J., Krishna S, Kabra D 2023 Appl. Phys. Rev. 10 021419Google Scholar

    [26]

    Liu T, Li C, Yuan B L, Chen Y, Wei H M, Cao B Q 2022 Appl. Phys. Lett. 121 012102Google Scholar

    [27]

    Alnuaimi A, Almansouri I, Nayfeh A 2016 J. Comput. Electron. 15 1110Google Scholar

    [28]

    Wang T, Xiao J G, Sun R, Luo L B, Yi M X 2022 Chin. Phys. B 31 018801Google Scholar

    [29]

    Luo X L, Hu Y, Lin Z H, Guo X, Zhang S Y, Shou C H, Hu Z S, Zhao X, Hao Y, Chang J J 2023 Solar RRL 7 2300081Google Scholar

    [30]

    Liu X Y, Li S Y, Li Z Q, Cao F, Su L, Shtansky D V, Fang X S 2022 ACS Appl. Mater. Interfaces 14 48936Google Scholar

    [31]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 物理学报 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [32]

    Li G X, Wang Y K, Huang L X, Sun W H 2022 J. Alloys Compd. 907 164432Google Scholar

    [33]

    Wang S L, Li M Y, Song C Y, Zheng C L, Li J T, Li Z Y, Zhang Y T, Yao J Q 2023 Appl. Surf. Sci. 623 156983Google Scholar

    [34]

    Yuan Y, Ji Z, Yan G H, Li Z W, Li J L, Kuang M, Jiang B Q, Zeng L L, Pan L K, Mai W J 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [35]

    Wang H, Du Z T, Jiang X, Cao S, Zou B S, Zheng J J, Zhao J L 2024 ACS Appl. Mater. Interfaces 16 11694Google Scholar

    [36]

    Hua F, Du X, Huang Z Y, Gu Y T, Wen J F, Liu F C, Chen J X, Tang T 2023 J. Opt. Soc. Am. B: Opt. Phys. 41 55Google Scholar

    [37]

    Zhang T, Cai S Y, Liang N N, Gao Y L, Li Y P, Liu F C, Long L Z, Liu J 2023 Phys. Scr. 99 015526Google Scholar

    [38]

    Su L X, Li T F, Zhu Y 2022 Opt. Express 30 23330Google Scholar

    [39]

    Zhou H, Wang R, Zhang X H, Xiao B A, Shuang Z H, Wu D J, Qin P L 2023 IEEE Trans. Electron Devices 70 6435Google Scholar

  • 图 1  (a) 不同结构MSM型CsPbBr3薄膜光电探测器结构示意图; (b) 使用PLD制备的CsPbBr3薄膜的XRD扫描图; (c) CsPbBr3薄膜的紫外-可见吸收光谱图和荧光光谱图; (d) 平面MSM型CsPbBr3薄膜光电探测器响应速度图; (e) 垂直MSM型CsPbBr3薄膜光电探测器响应速度图; (f) 450 nm激光照射下, 垂直/平面MSM型CsPbBr3薄膜光电探测器的光暗电流图

    Fig. 1.  (a) Schematic diagram of MSM-type CsPbBr3 thin film photodetectors with different structures; (b) XRD patterns of CsPbBr3 thin films prepared using PLD; (c) UV-visible absorption spectrum and fluorescence spectrum of CsPbBr3 thin film; (d) response time graph of planar MSM-type CsPbBr3 thin film photodetector; (e) response time graph of vertical MSM-type CsPbBr3 thin film photodetector; (f) photo-dark current graph of vertical/planar MSM-type CsPbBr3 thin film photodetector under 450 nm laser illumination.

    图 2  (a) CsPbBr3薄膜裸漏的表面扫描电子显微镜(SEM)图; (b)旋涂的NiOx薄膜表面SEM图; (c)旋涂的TiO2薄膜表面SEM图; (d)旋涂的TiO2薄膜断面SEM图; (e)如插图所示, –20 V偏压下, 与图(a), (b), 图(c)分别对应的器件电流-时间(I-T)曲线对比图

    Fig. 2.  (a) Scanning Electron Microscope (SEM) image of the exposed surface of CsPbBr3 thin film; (b) SEM image of the surface of spin-coated NiOx thin film; (c) SEM image of the surface of spin-coated TiO2 thin film; (d) cross-sectional SEM image of the spin-coated TiO2 thin film; (e) as illustrated, comparison of the device current-time (I-T) curves under a –20 V bias corresponding to panels (a), (b), (c).

    图 3  (a) 不同界面缺陷态密度下垂直结构CsPbBr3薄膜光电探测器模拟暗电流曲线; (b) 加入一层NiOx薄膜后, CsPbBr3/NiOx薄膜器件总电流、电子电流和空穴电流的模拟I-V曲线图; (c) 加入一层TiO2薄膜后, CsPbBr3/TiO2薄膜器件总电流、电子电流和空穴电流的模拟I-V曲线图; (d)—(f) 与图(a), (b), (c)对应的光电探测器件内部电流分布图

    Fig. 3.  (a) Simulated dark current curves of vertical structure CsPbBr3 thin film photodetectors under different interface defect state densities; (b) after adding a layer of NiOx, simulated I-V curves showing total current, electron current, and hole current for CsPbBr3/NiOx thin film devices; (c) after adding a layer of TiO2, simulated I-V curves showing total current, electron current, and hole current for CsPbBr3/TiO2 thin film devices; (d)–(f) diagrams showing the distribution of internal current in photodetector devices corresponding to figures (a), (b), (c).

    图 4  (a) CsPbBr3薄膜的紫外光电子能谱图; (b) CsPbBr3/NiOx薄膜光电探测器的能带图; (c) CsPbBr3/TiO2薄膜光电探测器的能带图; (d) 450 nm光照, 在黑暗和不同光照强度下垂直MSM型CsPbBr3薄膜光电探测器的I-V曲线图; (e) 450 nm光照, 在不同偏置电压下垂直MSM型CsPbBr3薄膜光电探测器的I-T曲线图; (f) 垂直MSM型CsPbBr3薄膜光电探测器的瞬态光响应曲线图

    Fig. 4.  (a) Ultraviolet photoelectron spectroscopy of CsPbBr3 thin films; (b) band diagram of CsPbBr3/NiOx thin film photodetectors; (c) band diagram of CsPbBr3/TiO2 thin film photodetectors; (d) I-V characteristics of vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination, in darkness and at various light intensities; (e) I-T curves of vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination at different bias voltages; (f) transient photocurrent response curves of vertical MSM-type CsPbBr3 thin film photodetectors.

    图 5  (a) 450 nm光照和–20 V偏置, 不同光照强度下垂直MSM型CsPbBr3薄膜光电探测器的光电流的绝对值大小; (b) 不同光照强度下的开关比; (c) 不同光照强度下的响应度; (d) 不同光照强度下的探测率

    Fig. 5.  (a) The absolute magnitude of the photocurrent in vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination and a -20 V bias at different light intensities; (b) on/off ratio at different light intensities; (c) responsivity at different light intensities; (d) detectivity at different light intensities.

    表 1  CsPbBr3基薄膜光电探测器的性能对比

    Table 1.  Performance comparison of CsPbBr3-based thin film photodetectors.

    Detector Structure Dark current/(10–10 A) D*/(109 Jones) τrise/τfall/(ms/ms) Ref.
    CsPbBr3 NPLs/Ag Planar –0.37(–3 V) 9300 75/72 [35]
    n-Si/CsPbBr3/Au Planar 0.003(0 V) 105 190/291 [36]
    1D-TiO2/0D-CsPbBr3/Au Planar 4(1 V) 1800 9348/5951 [37]
    CsPbBr3/ZnO Vertical –5(–5 V) 7 0.061/1.4 [38]
    SnO2/CsPbBr3/Carbon Vertical 330(0 V) 370 0.11/0.23 [39]
    CsPbBr3/TiO2/Ag Vertical –0.0481(–1 V) 1160 0.063/0.162 This work
    下载: 导出CSV
  • [1]

    Xu J, Li J, Wang H S, He C Y, Li J L, Bao Y N, Tang H Y, Luo H D, Liu X C, Yang Y M 2021 Adv. Mater. Interfaces 9 2101487Google Scholar

    [2]

    Zhang Y, Wu C Y, Zhou X Y, Li J C, Tao X Y, Liu B Y, Chen J W, Chang Y J, Tong G Q, Jiang Y 2023 Mater. Today Phys. 36 101179Google Scholar

    [3]

    Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 3337Google Scholar

    [4]

    Perumalveeramalai C, Zheng J, Wang Y, Guo H L, Pammi S. V. N., Mudike R, Li C B 2024 Chem. Eng. J. 492 152213Google Scholar

    [5]

    Wang Y Z, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K 2022 Mater. Horiz. 9 220Google Scholar

    [6]

    Zheng J B, Yang D Z, Guo D C, Yang L Q, Li Ji, Ma D G 2023 ACS Photonics 10 1382Google Scholar

    [7]

    Wang H D, Huang H X, Zha J J, et al. 2023 Adv. Opt. Mater. 11 2301508Google Scholar

    [8]

    Gong W Q, Tian Y Z, Yan J, Gao F, Li L 2022 J. Mater. Chem. C 10 7460Google Scholar

    [9]

    Qiao S, Liu J H, Wang R N, Guo L J, Wang S F, Pan A L, Pan C F 2023 Adv. Opt. Mater. 11 2300751Google Scholar

    [10]

    Li X, Xiang Y, Wan J X, Xiao Z X, Yuan H, Sun J, Liu Y F, Dai G Z, Yang J L 2022 Org. Electron. 101 106409Google Scholar

    [11]

    Zhu L P, Cheng X M, Wang A W, Shan Y S, Cao X L, Cao B Q 2023 Appl. Phys. Lett. 123 212105Google Scholar

    [12]

    Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J, Wang K Y 2023 ACS Nano 17 8411Google Scholar

    [13]

    Zhao Z E, Tang W B, Zhang S H, Ding Y C, Zhao X F, Yuan G L 2023 J. Phys. Chem. C 127 4846Google Scholar

    [14]

    王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强 2024 物理学报 73 058503Google Scholar

    Wang A W, Zhu L P, Shan Y S, Liu P, Cao X L, Cao B Q 2024 Acta Phys. Sin. 73 058503Google Scholar

    [15]

    Yan T T, Liu X Y, Zhang X Y, Hong E L, Wu L M, Fang X S 2023 Adv. Funct. Mater. 34 2311042Google Scholar

    [16]

    Saleem M I, Sulaman M, Batool A, Bukhtiar A, Khalid S 2023 Energy Technol. 11 2300013Google Scholar

    [17]

    Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar

    [18]

    Ahirwar P, Kumar R 2023 Chem. Phys. Lett. 810 140180Google Scholar

    [19]

    Bai T X Y, Wang S W., Bai L Y, Zhang K X., Chu C Y., Yi L X. 2022 Nanoscale Res. Lett. 17 69Google Scholar

    [20]

    Yun K R, Lee T J, Kim S K, Kim J H, Seong T Y 2022 Adv. Opt. Mater. 11 2201974Google Scholar

    [21]

    Mukhokosi E P, Maaza M 2022 J. Mater. Sci. 57 1555Google Scholar

    [22]

    Sathyanarayana S, Krishnan K N, Das B C. 2024 Phys. Rev. Appl. 21 044015Google Scholar

    [23]

    Cai J, Zhao T, Chen M M, Su J Y, Shen X M, Liu Y, Cao D W 2022 J. Phys. Chem. C 126 10007Google Scholar

    [24]

    Zhou H P, Chen M W, Liu C G, Zhang R, Li J, Liao S A, Lu H F, Yang Y P 2023 Discover Nano 18 11Google Scholar

    [25]

    Bhardwaj B, Bothra U, Singh S, Mills S, Ronningen T. J., Krishna S, Kabra D 2023 Appl. Phys. Rev. 10 021419Google Scholar

    [26]

    Liu T, Li C, Yuan B L, Chen Y, Wei H M, Cao B Q 2022 Appl. Phys. Lett. 121 012102Google Scholar

    [27]

    Alnuaimi A, Almansouri I, Nayfeh A 2016 J. Comput. Electron. 15 1110Google Scholar

    [28]

    Wang T, Xiao J G, Sun R, Luo L B, Yi M X 2022 Chin. Phys. B 31 018801Google Scholar

    [29]

    Luo X L, Hu Y, Lin Z H, Guo X, Zhang S Y, Shou C H, Hu Z S, Zhao X, Hao Y, Chang J J 2023 Solar RRL 7 2300081Google Scholar

    [30]

    Liu X Y, Li S Y, Li Z Q, Cao F, Su L, Shtansky D V, Fang X S 2022 ACS Appl. Mater. Interfaces 14 48936Google Scholar

    [31]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 物理学报 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [32]

    Li G X, Wang Y K, Huang L X, Sun W H 2022 J. Alloys Compd. 907 164432Google Scholar

    [33]

    Wang S L, Li M Y, Song C Y, Zheng C L, Li J T, Li Z Y, Zhang Y T, Yao J Q 2023 Appl. Surf. Sci. 623 156983Google Scholar

    [34]

    Yuan Y, Ji Z, Yan G H, Li Z W, Li J L, Kuang M, Jiang B Q, Zeng L L, Pan L K, Mai W J 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [35]

    Wang H, Du Z T, Jiang X, Cao S, Zou B S, Zheng J J, Zhao J L 2024 ACS Appl. Mater. Interfaces 16 11694Google Scholar

    [36]

    Hua F, Du X, Huang Z Y, Gu Y T, Wen J F, Liu F C, Chen J X, Tang T 2023 J. Opt. Soc. Am. B: Opt. Phys. 41 55Google Scholar

    [37]

    Zhang T, Cai S Y, Liang N N, Gao Y L, Li Y P, Liu F C, Long L Z, Liu J 2023 Phys. Scr. 99 015526Google Scholar

    [38]

    Su L X, Li T F, Zhu Y 2022 Opt. Express 30 23330Google Scholar

    [39]

    Zhou H, Wang R, Zhang X H, Xiao B A, Shuang Z H, Wu D J, Qin P L 2023 IEEE Trans. Electron Devices 70 6435Google Scholar

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] 王斐, 杨振清, 夏雨虹, 刘畅, 林春丹. Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究. 物理学报, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [5] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): . doi: 10.7498/aps.73.20241152
    [6] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [7] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [9] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [11] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [12] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [13] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [14] 陆子晴, 韩勤, 叶焓, 王帅, 肖峰, 肖帆. 适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列. 物理学报, 2021, 70(20): 208501. doi: 10.7498/aps.70.20210781
    [15] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [16] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [19] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
计量
  • 文章访问数:  794
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-08-26
  • 上网日期:  2024-09-05
  • 刊出日期:  2024-10-20

/

返回文章
返回