-
无机CsPbIBr2钙钛矿具有较高的相稳定性和较宽的带隙, 可用于研发钙钛矿叠层电池或半透明电池技术, 具有良好的发展潜力. 高质量的CsPbIBr2钙钛矿薄膜是制备高效钙钛矿太阳能电池的关键. 为了提高CsPbIBr2钙钛矿薄膜的结晶质量, 本文将对氨基苯甲酸(PABA)添加到钙钛矿前驱体中以调控其结晶过程. 由于C=O和Pb2+具有较强的配位作用, 同时—NH2与卤素阴离子可以形成氢键, 前驱体溶液中形成了新的亚稳态中间相. 该中间相减缓了钙钛矿的结晶速率, 调控了晶粒的生长, 制备了晶粒尺寸增大且致密的钙钛矿薄膜. 本文采用电化学测试和光谱分析相结合的表征方法分析了添加PABA后钙钛矿薄膜的质量及相应电池的光伏性能. 结果表明, 添加PABA后, 钙钛矿薄膜的结晶质量提高、光吸收增强、缺陷密度减小. 相应电池的光电转换效率提高了约22%. 未封装的电池在空气中存放1500 h后, 平均效率依然保持了初始值的80%, 表现出较高的稳定性.Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, compared with CsPbI2 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To solve this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectrum indicates the existence of coordination interaction between C=O and Pb²+ and the formation of hydrogen bonds between —NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectrum and X-ray diffraction (XRD) spectrum demonstrate that a new intermediate phase, PABA·Pb···Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are used to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared with that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
-
Keywords:
- CsPbIBr2 /
- inorganic perovskite /
- crystallization regulation /
- perovskite solar cells
-
图 1 (a) PABA分子的结构和静电势; (b) CsPbIBr2, PABA和添加PABA后CsPbIBr2样品的FTIR谱图; (c) CsPbIBr2和添加PABA后CsPbIBr2前驱体的UV-Vis谱图; (d) PbBr2和添加PABA后PbBr2的XRD谱图
Fig. 1. (a) Molecular structure and electrostatic potential of PABA; (b) FTIR spectra of CsPbIBr2, PABA and CsPbIBr2 with PABA; (c) UV-Vis spectra of the precursor of CsPbIBr2 and CsPbIBr2 with PABA; (d) XRD patterns of PbBr2 and PbBr2 with PABA.
图 5 CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿所组装电池的光伏性能 (a) J-V特性曲线; (b) 不同波长的单色光照射下两种电池的光子-电子转化效率和积分电流密度曲线; (c) 最大功率点的稳定功率输出曲线; (d) 30块电池的PCE分布
Fig. 5. Photovoltaic performance of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) J-V curves; (b) the incident photon to current conversion efficiency and integrated current density curves; (c) stable power output curves at maximum power points; (d) PCE distribution of 30 cells
图 6 CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿电池的电化学测试和光谱分析 (a) 暗电流-电压曲线; (b) Mott-Schottky曲线; (c) Nyquist图; (d) 玻璃/CsPbIBr2/碳电极和玻璃/添加PABA的CsPbIBr2/碳电极两种半电池的PL光谱
Fig. 6. Electrochemical tests and spectral analysis of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) Dark current-voltage curves; (b) Mott-Schottky curves; (c) Nyquist plots; (d) PL spectra of half-cells fabricated by glass/CsPbIBr2/carbon electrode and glass/CsPbIBr2 with PABA /carbon electrode.
图 7 (a) 20—25 ℃, 20%—30% RH、空气环境中两种钙钛矿薄膜的颜色随时间变化的图像; (b)相同条件下未封装的电池PCE随时间的变化; (c) 在85 ℃、干燥的N2手套箱中未封装的电池PCE随时间的变化; (d) 85% RH、空气条件下未封装的电池PCE随时间的变化
Fig. 7. (a) Images of the color evolution of different perovskite films at 20–25 ℃, 20%–30% RH, and air atmosphere; (b) curves of the PCE evolution of unencapsulated cells at the same condition; (c) curves of the PCE evolution of unencapsulated cells at 85 ℃ and dry N2 atmosphere; (d) curves of the PCE evolution of unencapsulated cells at 85% RH and air atmosphere.
表 1 已报道的碳基CsPbIBr2 PSCs的光伏参数
Table 1. Photovoltaic parameters of carbon-based CsPbIBr2 PSCs reported previously.
电池结构 Jsc/(mA·cm–2) Voc/V FF/% PCE/% Ref. ITO/TiO2/CsPbIBr2/Carbon 11.87 1.312 68.4 10.65 本研究 FTO/SnO2/CsPbIBr2/Carbon 9.23 1.08 0.60 5.95 [32] ITO/TiO2/CsPbIBr2/CuSCN/Carbon 10.01 1.19 0.60 7.17 [33] ITO/TiO2/CsPbIBr2/Ti3C2Clx/Carbon 11.56 1.29 69.93 10.43 [34] FTO/TiO2/CsPbIBr2/GQDs/Carbon 11.93 1.25 65.4 9.8 [35] ITO/TiO2/CsPbIBr2/Carbon 11.64 1.31 67 10.23 [36] ITO/TiO2/CsPbIBr2/Carbon 11.69 1.29 66.97 10.10 [37] FTO/TiO2/CsPbIBr2/Carbon 11.25 1.32 71.9 10.68 [38] FTO/TiO2/CsPbIBr2/DES/Carbon 9.2 1.24 61.5 7.04 [39] FTO/TiO2/m-TiO2/CsPbIBr2/Carbon 11.67 1.24 70 10.13 [40] FTO/TiO2/ET/CsPbIBr2/Carbon 11.63 1.325 72.23 11.13 [41] FTO/TiO2/PPC-CsPbIBr2/Carbon 10.25 1.25 57.5 7.36 [42] ITO/TiO2/ODTC-CsPbIBr2/Carbon 11.48 1.30 68 10.15 [13] FTO/TiO2/m-TiO2/PTU-CsPbIBr2/Carbon 11.28 1.26 71 10.09 [43] FTO/Li: TiO2/CsPbIBr2/Carbon 10.01 1.26 64 8.09 [44] FTO/TiO2/CsPbIBr2-SAM/Carbon 11.81 1.317 71.1 11.06 [45] FTO/TiO2/Cd- CsPbIBr2/carbon 11.53 1.324 69.63 10.63 [46] FTO/TiO2/PMMA/CsPbIBr2/carbon 11.36 1.307 62 9.21 [47] FTO/TiO2/MAAc/CsPbIBr2/carbon 10.86 1.26 64.56 8.85 [48] FTO/TiO2/CsPbIBr2/P3 HT:PC61BM/Carbon 11.79 1.31 74.47 11.54 [49] FTO/TiO2/CsPbIBr2/Carbon 10.88 1.08 64 7.52 [50] -
[1] Zhu P C, Chen C L, Dai J Q, Zhang Y Z, Mao R Q, Chen S S, Huang J S, Zhu J 2024 Adv. Mater. 36 2307357
Google Scholar
[2] Deng F, Song X F, Li Y, Zhang W Q, Tao X 2024 Chem. Eng. J. 489 151228
Google Scholar
[3] Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415
Google Scholar
[4] Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754
Google Scholar
[5] You Y B, Tian W, Wang M, Cao F R, Sun H X, Li L 2020 Adv. Mater. Interface 7 2000537
Google Scholar
[6] Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16
Google Scholar
[7] He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960
Google Scholar
[8] Pan J Y, Zhang X, Zheng Y, Xiang W C 2021 Sol. Energy Mater. Sol. Cells 221 110878
Google Scholar
[9] Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135
Google Scholar
[10] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁 2023 物理学报 72 158801
Google Scholar
Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801
Google Scholar
[11] Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEngComm 26 4376
Google Scholar
[12] He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954
Google Scholar
[13] Liu X, Jing Y, Wang C Y, Wang X, Li R S, Xu Y, Yan Z L, Zhang H Y, Wu J H, Lan Z 2023 Adv. Mater. Interface 10 2202159
Google Scholar
[14] Zhang J S, Duan J L, Zhang Q Y, Guo Q Y, Yan F R, Yang X Y, Duan Y Y, Tang Q W 2022 Chem. Eng. J. 431 134230
Google Scholar
[15] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802
Google Scholar
Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802
Google Scholar
[16] Wang G Q, Chang J R, Bi J Y, Zhang W, Meng F N 2022 Sol. RRL 6 2200656
Google Scholar
[17] Zhuang R S, Wang L Q, Qiu J M, Xie L, Miao X H, Zhang X L, Hua Y 2023 Chem. Eng. J. 463 142449
Google Scholar
[18] Chen S M, Wang J T, Yu C, Jiang N, Wang Z Y, Zhou Y B, He C Y, Fang K, Liu B, Zhang J, Li Y, Li C N, Chen P, Duan Y 2022 Sol. RRL 6 2200405
Google Scholar
[19] Sun Q, Wang T, Zhou C C, Zhang C, Shao Y, Liu X L, Wang Y N, Lin J, Chen X F 2023 J. Alloys Compd. 960 170629
Google Scholar
[20] Cao K, Huang Y, Ge M R, Huang F, Shi W J, Wu Y P, Cheng Y F, Qian J, Liu LH, Chen S F 2021 ACS Appl. Mater. Interfaces 13 26013
Google Scholar
[21] An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750
Google Scholar
[22] Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902
Google Scholar
[23] Miao Y F, Ren M, Chen Y T, Wang H F, Chen H R, Liu X M, Wang T F, Zhao Y X 2023 Nat. Sustain. 6 1465
Google Scholar
[24] Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol. 9 2100312
Google Scholar
[25] Cao X B, Hao L, Liu Z J, Su G Y, He X, Zeng Q G, Wei J Q 2022 Chem. Eng. J. 437 135458
Google Scholar
[26] Du Y C, Tian Q W, Chang X M, Fang J J, Gu X J, He X J, Ren X L, Zhao K, Liu S Z 2022 Adv. Mater. 34 2106750
Google Scholar
[27] Huang X F, Deng G C, Zhan S Q, Cao F, Cheng F W, Yin J, Li J, Wu B H, Zheng N F 2022 ACS Cent. Sci. 8 1008
Google Scholar
[28] Cheng X, Gan X G, Jin G, Chen Z L, Li N 2024 ChemSusChem 18 202401366
[29] Wu S C, Yun T, Zheng C Q, Luo X Y, Qiu P, Yu H Y, Wang Q W, Gao J W, Lu X B, Gao X S, Shui L L, Wu S J, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297
Google Scholar
[30] Bi J Y, Wang D S, Chang J R, Li J H, Meng F N, Wang G Q 2023 J. Alloys Compd. 965 171441
Google Scholar
[31] Wang S L, Wang P Y, Shi B, Sun C, Sun H R, Qi S S, Huang Q, Xu S Z, Zhao Y, Zhang X D 2023 Adv. Mater. 35 2300581
Google Scholar
[32] Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942
Google Scholar
[33] Du Z B, Li R S, Lu Y, Deng C Y, Lin J M, Wu J H, Lan Z 2024 ACS Appl. Nano Mater. 7 5454
Google Scholar
[34] Xu Y, Zhang H Y, Jing Y, Wang X, Gan J Q, Yan Z L, Liu X, Wu J H, Lan Z 2023 Appl. Surf. Sci. 619 156674
Google Scholar
[35] Zhou Q Z, Tang S Y, Yuan G H, Zhu W L, Huang Y Y, Li S J, Lin M J 2022 J. Alloys Compd. 895 162529
Google Scholar
[36] Xu Y, Zhang H Y, Liu F L, Li R S, Jing Y, Wang X, Wu J H, Zhang J Y, Lan Z 2024 Appl. Surf. Sci. 658 159831
Google Scholar
[37] Wang X, Xu Y, Zhang H Y, Yan Z L, Jing Y, Liu X, Wu J H, Lan Z 2022 Adv. Sustain. Syst. 6 2200074
Google Scholar
[38] He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954
Google Scholar
[39] Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134
Google Scholar
[40] Wang G Q, Chang J R, Bi J Y, Wang D S, Meng F N 2024 Cryst. Growth Des. 24 817
Google Scholar
[41] Qi Z T, Li J B, Zhang X Y, Dou J, Guo Q Y, Zhao Y Y, Yang P Z, Tang Q W, Duan J L 2024 ACS Appl. Mater. Interfaces 16 14974
Google Scholar
[42] Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672
Google Scholar
[43] Bi J Y, Chang J R, Lei M, Meng F N, Wang G Q 2023 Energy Technol. 11 2201459
Google Scholar
[44] Zhao F, Guo Y X, Yang P Z, Tao J H, Jiang J C, Chu J H 2023 J. Alloys Compd. 930 167377
Google Scholar
[45] Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387
Google Scholar
[46] Xu Y, Li G, Jing Y, Zhang H Y, Wang X, Lu Y, Wu J H, Lan Z 2022 J. Colloid Interface Sci. 608 40
Google Scholar
[47] Chai W M, Ma J X, Zhu W D, Chen D Z, Xi H, Zhang J C, Zhang C F, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868
Google Scholar
[48] Shi L X, Yuan H Y, Sun X G, Li X Y, Zhu W B, Wang J, Duan L S, Li Q L, Zhou Z, Huang Z G, Ban X X, Zhang D G 2021 ACS Appl. Energy Mater. 4 10584
Google Scholar
[49] Wang D, Li W J, Li R S, Sun W H, Wu J H, Lan Z 2021 Sol. RRL 5 2100375
Google Scholar
[50] Liu J Q, He Q Q, Bi J Y, Lei M, Zhang W, Wang G Q 2021 Chem. Eng. J. 424 130324
Google Scholar
计量
- 文章访问数: 199
- PDF下载量: 3
- 被引次数: 0