搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时熵源评估二重并行连续变量量子随机数发生器

郭晓敏 王岐岐 罗越 宋智杰 李正雅 瞿毅坤 郭龑强 肖连团

引用本文:
Citation:

实时熵源评估二重并行连续变量量子随机数发生器

郭晓敏, 王岐岐, 罗越, 宋智杰, 李正雅, 瞿毅坤, 郭龑强, 肖连团
cstr: 32037.14.aps.74.20250333

Real-time entropy source evaluated dual-parallel continuous variable quantum random number generator

GUO Xiaomin, WANG Qiqi, LUO Yue, SONG Zhijie, LI Zhengya, QU Yikun, GUO Yanqiang, XIAO Liantuan
cstr: 32037.14.aps.74.20250333
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 源于量子内禀随机性的量子随机数发生器(quantum random number generator, QRNG)提供了安全性信息论可证的真随机数. 本文提出一种融合实时相空间监测与熵评估的二重并行连续变量QRNG方案, 通过动态阈值监测机制与自适应后处理矩阵规模调整技术, 同步提升QRNG安全性与生成效率, 该方案创新性地将熵源状态追踪与随机数提取优化相结合. 实验上构建基于外差探测的真空态双边带模并行提取系统, 为高精度、高速全息重构量子态和四路并行提取量子随机数提供了充足的原始数据; 高动态范围、高分辨率、矩阵规模实时可调的硬件基Toeplitz-hash后处理协调了熵源状态追踪与随机数提取优化. 在保持17 Gbit/s以上高产率的同时可有效抵御边信道攻击, 通过了NIST SP 800-22, Diehard及TestU01标准测试. 本工作为解决QRNG实时熵源可信评估难题提供了技术路径, 且该方案集成度高、扩展性好, 为量子随机数发生器走向应用提供了一种切实可行的方案.
    Continuous-variable quantum random number generator (cv-QRNG) has attracted much attention due to its convenient state preparation and high measurement bandwidth. Chip-size integration of this type of QRNG is expectable because all components involved have been integrated on a single chip recently. Most of the existing schemes, including all existing commercial schemes, usually use a once-and-for-all approach to evaluate quantum entropy. In this work, we propose a double-level parallel cv-QRNG scheme that integrates real-time phase-space monitoring and entropy evaluation. By using dynamic threshold monitoring and self-adapting scaling of Toeplitz matrix, the security and generation rate of QRNG can be enhanced simultaneously.Experimentally, a parallel extraction system of vacuum state double quadratures and multiple sideband modes is constructed based on heterodyne, providing sufficient raw data for high-precision and high-speed tomography reconstruction of quantum entropy source and parallel extraction of QRNG. Based on the statistical analysis of data under long-term stable operation of the system, dynamic KLD-sensitive security threshold for statistical distribution of Husimi-Q function of the entropy source is established. When a weak chaotic field is injected to simulate a thermal state attack, the KLD value jumps and quickly deviates from the steady state baseline, manifesting a sensitive identification of the attack. It is worth pointing out that the threshold parameter can be dynamically optimized according to the security requirements of actual application scenarios. An FPGA-based real-time feedback Toeplitz-hash extractor employs a maximum matrix bit-width truncation method to dynamically adjust Toeplitz matrix parameters. This optimization reduces the maximum extraction ratio interval from 6% to 1.8%, with all intervals below 1% for extraction ratios 76%, significantly mitigating entropy losses caused by discrete adjustment of the Toeplitz matrix, and achieving a minimum extraction ratio of 16.9%. This flexibility enables the system to accurately control the response sensitivity of abnormal signals while maintaining the real-time generation of quantum random bits. Finally, real-time generation rate of 17.512 Gbit/s is attained with security parameters at the level of 10–50 and the generated random numbers passed NIST SP 800-22, Diehard, and TestU01 standard tests.This research provides a technical path for real-time assessment of entropy source security in QRNG. The proposed scheme has good integrability and scalability, presenting a feasible solution for QRNG to enter the application stage.
      通信作者: 郭龑强, guoyanqiang@tyut.edu.cn ; 肖连团, xlt@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1404201)、国家自然科学基金(批准号: 62475185, 62175176, U23A20380)和山西省基础研究计划(批准号: 202403021221034)资助的课题.
      Corresponding author: GUO Yanqiang, guoyanqiang@tyut.edu.cn ; XIAO Liantuan, xlt@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant Nos. 62475185, 62175176, U23A20380), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021221034).
    [1]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105Google Scholar

    [2]

    Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110Google Scholar

    [3]

    Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760Google Scholar

    [4]

    Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085Google Scholar

    [5]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675Google Scholar

    [6]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820Google Scholar

    [7]

    Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489Google Scholar

    [8]

    Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106Google Scholar

    [9]

    Wei W, Guo H 2009 Opt. Lett. 34 1876Google Scholar

    [10]

    Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106Google Scholar

    [11]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137Google Scholar

    [12]

    Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730Google Scholar

    [13]

    Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056Google Scholar

    [14]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [15]

    Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814Google Scholar

    [16]

    Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103Google Scholar

    [17]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330Google Scholar

    [18]

    Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605Google Scholar

    [19]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [20]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711Google Scholar

    [21]

    Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819Google Scholar

    [22]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004Google Scholar

    [23]

    Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566Google Scholar

    [24]

    Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259Google Scholar

    [25]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105Google Scholar

    [26]

    Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452Google Scholar

    [27]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [28]

    Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25Google Scholar

    [29]

    Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68Google Scholar

    [30]

    Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020Google Scholar

    [31]

    Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024Google Scholar

    [32]

    Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017Google Scholar

    [33]

    Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1Google Scholar

    [34]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503Google Scholar

    [35]

    Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013Google Scholar

    [36]

    Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021Google Scholar

    [37]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [38]

    Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048Google Scholar

    [39]

    Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422Google Scholar

    [40]

    Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101Google Scholar

    [41]

    Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606Google Scholar

    [42]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209Google Scholar

    [43]

    Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141Google Scholar

    [44]

    Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244Google Scholar

    [45]

    Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601Google Scholar

    [46]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [47]

    Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365Google Scholar

    [48]

    Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803Google Scholar

    [49]

    Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13

    [50]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [51]

    Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725Google Scholar

    [52]

    Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289Google Scholar

    [53]

    Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801Google Scholar

    [54]

    Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575

    [55]

    Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317

    [56]

    Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917Google Scholar

    [57]

    Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136Google Scholar

    [58]

    Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1

    [59]

    Wu Y, Ma X 2022 Renew. Energy 181 554Google Scholar

    [60]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159Google Scholar

    [61]

    Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108Google Scholar

    [62]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556Google Scholar

    [63]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [64]

    Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044Google Scholar

    [65]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [66]

    Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108

    [67]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [68]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [69]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333Google Scholar

  • 图 1  基于外差探测的多路并行实时熵评估QRNG实验方案, 其中TC为温控源, CS为电流源, LD为半导体激光器, VOA为衰减器, OPC为光学偏振器, BS1为80∶20分束器, Laser为激光源, BS2为 90∶10分束器, 90°Hybrid为90°光混频器, OPM为功率计, BHD为光电探测器, PS为功分器, M为混频器, AWG为信号发生器, LPF为滤波器, ADC为模数转换器, FPGA为现场可编程门阵列, PC为上位机

    Fig. 1.  A multi-channel parallel real-time entropy evaluation QRNG experimental scheme based on heterodyne detection, where TC represents temperature-controlled source, CS represents current source, LD represents semiconductor laser, VOA represents attenuator, OPC represents optical polarizer, BS1 represents 80∶20 beam splitter, Laser represents laser source, BS2 represents 90∶10 beam splitter, 90° hybrid represents 90° optical mixer, OPM represents power meter, BHD represents photodetector, PS represents power divider, M represents mixer, AWG represents signal generator, LPF represents filter, ADC represents analog-to-digital converter, FPGA represents field programmable gate array, PC represents upper computer.

    图 2  真空态双分量散粒噪声功率谱图

    Fig. 2.  Vacuum-state two-component shot noise power spectrum.

    图 3  后处理与熵反馈模块示意图

    Fig. 3.  Schematic diagram of the post-processing and entropy feedback module.

    图 4  标准NIST统计套件测试结果

    Fig. 4.  Standard NIST statistical suite test results.

    图 5  (a) TestU01测试结果; (b) Diehard测试结果

    Fig. 5.  (a) Test results of TestU01; (b) test results of Diehard.

    图 6  不同探测效率下层析精度变化曲面图 (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1

    Fig. 6.  Performance ratio surface plot for different detection efficiency: (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1.

    图 7  不同探测效率下层析精度变化曲面图(考虑Arthurs-Kelly误差) (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1

    Fig. 7.  Performance ratio surface plot considering Arthurs-Kelly error with different detection efficiency: (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1.

    图 8  不同效率下的性能比与光子数的关系

    Fig. 8.  Relationship between performance ratio and number of photons at different efficiencies.

    图 9  信号方差随本振光功率的变化

    Fig. 9.  Relationship of signal variance with local oscillator optical power.

    图 10  实验重构结果 (a) 不同本振功率下KLD随迭代次数的变化; (b) 迭代300次的Wigner分布; (c) 不同本振功率下KLD随截断值kc的变化图; (d) 截断值kc为4的Wigner分布; (e) HET中KLD随着本振功率变化; (f) HET重构的Husimi-Q分布

    Fig. 10.  Experimental reconstruction results: (a) The variation of KLD with the number of iterations at different local oscillator powers; (b) Wigner distribution with 300 iterations; (c) Variation of KLD with kc at different local oscillator powers; (d) Wigner distribution with a cut-off value of kc of 4; (e) KLD in HET with local oscillator power; (f) Husimi-Q distribution reconstructed by HET.

    图 11  不同数据量下3种重构方法的KLD值

    Fig. 11.  The KLD value of the three reconstruction methods under different sample sizes.

    图 12  (a) 热态攻击前后的Husimi-Q 分布, 其中网格化曲线对应真空态, 彩色直方图对应热态; (b) 热态攻击前后的KLD波动图

    Fig. 12.  (a) Husimi-Q distribution before and after a thermal attack, where gridded curve corresponds to vacuum state, color histogram corresponds to hot state; (b) KLD fluctuation plot before and after thermal attack.

    图 13  最小熵与QSNR关系图

    Fig. 13.  Graph of minimum entropy versus quantum signal-to-noise ratio.

    图 14  后处理矩阵调整流程示意图

    Fig. 14.  Schematic diagram of the post-processing matrix adjustment process.

    图 15  可变的矩阵规模硬件实现方法

    Fig. 15.  Variable matrix size implementation.

    图 16  (a) 矩阵步长为128时的后处理离散提取比例; (b) 矩阵步长为32时的后处理离散提取比例

    Fig. 16.  (a) Post-processing discrete extraction ratio at matrix step size of 128; (b) post-processing discrete extraction ratio at matrix step size of 32.

    表 1  不同通道的关键参数

    Table 1.  Structural parameters of capillary of different kind of fluid.

    通道 条件最小熵
    /(16 bit)
    矩阵规模
    m × n
    后处理提
    取比/%
    实时生
    成速率
    /(Gbit·s–1)
    X (300 MHz) 11.79 1729×2496 69.27 4.4334
    P (300 MHz) 11.71 1729×2496 69.27 4.4334
    X (800 MHz) 11.54 1729×2560 67.54 4.3226
    P (800 MHz) 11.45 1729×2560 67.54 4.3226
    下载: 导出CSV
  • [1]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105Google Scholar

    [2]

    Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110Google Scholar

    [3]

    Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760Google Scholar

    [4]

    Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085Google Scholar

    [5]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675Google Scholar

    [6]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820Google Scholar

    [7]

    Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489Google Scholar

    [8]

    Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106Google Scholar

    [9]

    Wei W, Guo H 2009 Opt. Lett. 34 1876Google Scholar

    [10]

    Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106Google Scholar

    [11]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137Google Scholar

    [12]

    Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730Google Scholar

    [13]

    Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056Google Scholar

    [14]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [15]

    Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814Google Scholar

    [16]

    Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103Google Scholar

    [17]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330Google Scholar

    [18]

    Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605Google Scholar

    [19]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [20]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711Google Scholar

    [21]

    Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819Google Scholar

    [22]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004Google Scholar

    [23]

    Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566Google Scholar

    [24]

    Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259Google Scholar

    [25]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105Google Scholar

    [26]

    Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452Google Scholar

    [27]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [28]

    Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25Google Scholar

    [29]

    Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68Google Scholar

    [30]

    Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020Google Scholar

    [31]

    Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024Google Scholar

    [32]

    Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017Google Scholar

    [33]

    Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1Google Scholar

    [34]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503Google Scholar

    [35]

    Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013Google Scholar

    [36]

    Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021Google Scholar

    [37]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [38]

    Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048Google Scholar

    [39]

    Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422Google Scholar

    [40]

    Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101Google Scholar

    [41]

    Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606Google Scholar

    [42]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209Google Scholar

    [43]

    Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141Google Scholar

    [44]

    Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244Google Scholar

    [45]

    Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601Google Scholar

    [46]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [47]

    Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365Google Scholar

    [48]

    Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803Google Scholar

    [49]

    Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13

    [50]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [51]

    Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725Google Scholar

    [52]

    Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289Google Scholar

    [53]

    Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801Google Scholar

    [54]

    Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575

    [55]

    Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317

    [56]

    Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917Google Scholar

    [57]

    Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136Google Scholar

    [58]

    Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1

    [59]

    Wu Y, Ma X 2022 Renew. Energy 181 554Google Scholar

    [60]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159Google Scholar

    [61]

    Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108Google Scholar

    [62]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556Google Scholar

    [63]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [64]

    Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044Google Scholar

    [65]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [66]

    Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108

    [67]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [68]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [69]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333Google Scholar

  • [1] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享. 物理学报, 2025, 74(16): . doi: 10.7498/aps.74.20250227
    [2] 孙新, 郭俊杰, 陈宇杰, 程锦, 刘奥, 刘文博, 尹鹏, 陈兰剑, 吴田宜, 东晨. 空间信道离散调制连续变量量子密钥分发可行性分析. 物理学报, 2025, 74(9): 090303. doi: 10.7498/aps.74.20241682
    [3] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [4] 吴晓东, 黄端. 基于非理想测量基选择的水下连续变量量子密钥分发方案. 物理学报, 2024, 73(21): 210302. doi: 10.7498/aps.73.20240804
    [5] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [6] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [7] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [8] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [9] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [10] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [11] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [12] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [13] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [14] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [15] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 翟泽辉, 李永明, 王少凯, 郭 娟, 张天才, 郜江瑞. 连续变量量子离物传态的实验研究. 物理学报, 2005, 54(6): 2710-2716. doi: 10.7498/aps.54.2710
计量
  • 文章访问数:  412
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-04-16
  • 上网日期:  2025-04-17

/

返回文章
返回