搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频感应耦合远端氢等离子体源的二维流体模拟

张宇 罗倩 黄高煌 高飞 王友年

引用本文:
Citation:

射频感应耦合远端氢等离子体源的二维流体模拟

张宇, 罗倩, 黄高煌, 高飞, 王友年

Two-dimensional fluid simulation of a radio-frequency inductively coupled remote hydrogen plasma source

ZHANG Yu, LUO Qian, HUANG Gaohuang, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 氢等离子体由于具有独特的物理和化学特性, 是反应室清洗时的首选气体. 为了更好地理解氢等离子体中的输运和扩散机理, 本文通过COMSOL仿真软件构建了二维流体模型, 系统研究了在不同放电参数和几何参数下射频感应耦合远端氢等离子体源的特性. 结果发现, 输入功率的影响主要体现在电子密度上而非电子温度. 这种现象可能是由于稳态放电中电离速率和损失速率之间的平衡机制造成的. 气压对驱动区和空间后辉光区中的等离子体有着相反的影响. 随着气压的升高, 驱动区电子密度逐渐增大, 但空间后辉光区电子密度逐渐减小. 这是可能是由于随着气压的逐渐增大, 非局域电子动理学向局域转变导致的. 增大输入功率可以有效提高氢自由基密度和扩散通量, 这表明高功率有利于氢自由基向空间后辉光区的输运. 提高工作气压也可以产生相同的效果, 但会降低空间后辉光区氢自由基密度. 此外, 在固定放电参数下, 适当增大几何参数有利于在后辉光区产生较高密度且较为均匀的氢自由基.
    Due to its unique physical and chemical properties, hydrogen plasma is the preferred gas for cleaning reaction chambers. To better understand the transport and diffusion mechanism in hydrogen plasma, this work presents a two-dimensional fluid model by using COMSOL simulation software, and systematically investigates the characteristics of a radio-frequency inductively coupled remote hydrogen plasma source under varying discharge and geometric parameters. The results show that input power primarily affects electron density rather than electron temperature. This phenomenon may result from the balancing mechanism between theionization rate and the loss rate in steady state discharges. The pressure has an opposite effect on the plasma in the driven region compared with that in the spatial afterglow region. As the pressure rises, the electron density in the driven region increases gradually, while the electron density in the spatial afterglow region decreases gradually. This may be due to the shift from non-local to local electron kinetics as the pressure rises. Increasing input power effectively enhances hydrogen radical density and diffusion flux, indicating that high power facilitates the transport of hydrogen radicals into the spatial afterglow region. However, elevating operating pressure has a similar effect while reducing hydrogen radical density in the spatial afterglow region. Furthermore, under fixed discharge conditions, increasing geometric parameters appropriately promotes the generation of higher and more uniform hydrogen radical densities within the afterglow region.
  • 图 1  射频感应耦合远端等离子体源结构示意图

    Fig. 1.  Schematic diagram of the radio frequency inductively coupled remote plasma source.

    图 2  放电气压为0.6 Pa, 不同输入功率下 (a), (b)电子密度径向和轴向分布; (c), (d) 电子温度径向和轴向分布; (e), (f) 氢自由基径向和轴向分布

    Fig. 2.  (a), (b) Electron density distribution radially and axially; (c), (d) electron temperature distribution radially and axially; (e), (f) hydrogen radical distribution radially and axially at a discharge pressure of 0.6 Pa under different input powers.

    图 3  放电气压0.6 Pa、不同输入功率下 (a)氢自由基和(b)氢离子的二维分布, 箭头表示通量

    Fig. 3.  Two-dimensional distribution of (a) hydrogen radicals and (b) hydrogen ions at a discharge pressure of 0.6 Pa under different input powers, where arrows indicate the flux.

    图 4  输入功率4 kW、不同放电气压下 (a), (b)电子密度径向和轴向分布; (c), (d)电子温度径向和轴向分布; (e), (f)氢自由基径向和轴向分布

    Fig. 4.  (a), (b) Electron density distribution radially and axially; (c), (d) electron temperature distribution radially and axially; (e), (f) hydrogen radical distribution radially and axially at an input power of 4 kW under different discharge pressures.

    图 5  输入功率4 kW、不同工作气压下, 氢自由基的二维分布, 箭头表示氢自由基通量

    Fig. 5.  Two-dimensional distribution of hydrogen radicals at an input power of 4 kW under different discharge pressures, where arrows indicate the flux of hydrogen radicals.

    图 6  不同放电参数对氢自由基体产生速率和体损失速率的影响 (a)输入功率; (b)工作气压

    Fig. 6.  Dependence of the volumetric production and loss rates of hydrogen radicals on discharge parameters: (a) Input power; (b) discharge pressure.

    图 7  不同放电参数对氢自由基表面产生速率和表面损失速率的影响 (a)输入功率; (b)工作气压

    Fig. 7.  Dependence of the surface production and loss rates of hydrogen radicals on discharge parameters: (a) Input power; (b) discharge pressure.

    图 8  输入功率4 kW、工作气压0.6 Pa、不同驱动区半径下 (a), (b)电子密度径向和轴向分布; (c), (d)电子温度径向和轴向分布; (e), (f)氢自由基径向和轴向分布

    Fig. 8.  (a), (b) Electron density distribution radially and axially; (c), (d) electron temperature distribution radially and axially; (e), (f) hydrogen radical distribution radially and axially at an input power of 4 kW and a discharge pressure of 0.6 Pa for different driver region radii.

    图 9  输入功率4 kW、工作气压0.6 Pa、不同驱动区半径下, 氢自由基的二维分布, 箭头表示氢自由基通量

    Fig. 9.  Two-dimensional distribution of hydrogen radicals at an input power of 4 kW and a discharge pressure of 0.6 Pa for different driver region radii, where arrows indicate the flux of hydrogen radicals.

    图 10  输入功率4 kW、工作气压0.6 Pa、不同后辉光区长度下 (a), (b)电子密度径向和轴向分布; (c), (d)电子温度径向和轴向分布; (e), (f)氢自由基径向和轴向分布

    Fig. 10.  (a), (b) Electron density distribution radially and axially; (c), (d) electron temperature distribution radially and axially; (e), (f) hydrogen radical distribution radially and axially at an input power of 4 kW and a discharge pressure of 0.6 Pa for afterglow region lengths.

    图 11  输入功率4 kW、工作气压0.6 Pa、不同后辉光区长度下, 氢自由基的二维分布, 箭头表示氢自由基通量

    Fig. 11.  Two-dimensional distribution of hydrogen radicals at an input power of 4 kW and a discharge pressure of 0.6 Pa for afterglow region lengths, where arrows indicate the flux of hydrogen radicals.

    图 12  不同几何参数对氢自由基体产生速率和体损失速率的影响 (a)驱动区半径; (b)后辉光区长度

    Fig. 12.  Dependence of the volumetric production and loss rates of hydrogen radicals on geometric parameters: (a) Driver region radius; (b) afterglow region length.

    图 13  不同几何参数对氢自由基表面产生速率和表面损失速率的影响 (a)驱动区半径; (b)后辉光区长度

    Fig. 13.  Dependence of the surface production and loss rates of hydrogen radicals on geometric parameters: (a) Driver region radius; (b) afterglow region length.

    表 1  模型中考虑的反应

    Table 1.  Reactions included in this model.

    ReactionDescriptionReferences
    $ \text{e}+{\text{H}}_{2}\rightarrow \text{e}+{\text{H}}_{2} $$ \mathrm{e}+{\mathrm{H}}_{2}\rightarrow \mathrm{e}+{\mathrm{H}}_{2} $Elastic scattering[31]
    $ \mathrm{e}+\mathrm{H}\rightarrow \mathrm{e}+\mathrm{H} $Elastic scattering[31]
    $ \text{e}+{\text{H}}_{2}\rightarrow 2\text{e}+\text{H}+{\text{H}}^{+} $$ \mathrm{e}+{\mathrm{H}}_{2}\rightarrow 2\mathrm{e}+\mathrm{H}+{\mathrm{H}}^{+} $Dissociative ionization[32]
    $ \text{e}+{\text{H}}_{2}\rightarrow 2\text{e}+\text{H}_{2}^{+} $Molecular ionization[32]
    $ \text{e}+{\text{H}}_{2}\rightarrow \text{e}+\text{H}+\text{H} $$ \mathrm{e}+{\mathrm{H}}_{2}\rightarrow \mathrm{e}+\mathrm{H}+\mathrm{H} $Dissociation[33]
    $ \text{e}+{\text{H}}_{2}\rightarrow \text{e}+\text{H}+\text{H}(n=2) $$ \mathrm{e}+{\mathrm{H}}_{2}\rightarrow \mathrm{e}+\mathrm{H}+\mathrm{H}(\mathrm{n}=2) $Dissociation[34]
    $ \text{e}+\text{H}\rightarrow 2\text{e}+{\text{H}}^{+} $$ \mathrm{e}+\mathrm{H}\rightarrow 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[32]
    $ \text{e}+\text{H}\rightarrow \text{e}+\text{H}(n=2, 3) $$ \mathrm{e}+\mathrm{H}\rightarrow \mathrm{e}+\mathrm{H}(\mathrm{n}=2{, }3) $Excitation[32]
    $ \text{e}+\text{H}(\text{n}=2, 3)\rightarrow 2\text{e}+{\text{H}}^{+} $$ \mathrm{e}+\mathrm{H}(\mathrm{n}=2{, }3)\rightarrow 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[32]
    $ \text{e}+\text{H}_{2}^{+}\rightarrow \text{e}+{\text{H}}^{+}+\text{H} $$ \mathrm{e}+\mathrm{H}_{2}^{+}\rightarrow \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H} $Dissociative excitation[32]
    $ \text{e}+\text{H}_{2}^{+}\rightarrow \text{e}+{\text{H}}^{+}+\text{H}(n=2) $$ \mathrm{e}+\mathrm{H}_{2}^{+}\rightarrow \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H}(\mathrm{n}=2) $Dissociative excitation[34]
    $ \text{e}+\text{H}_{2}^{+}\rightarrow \text{H}+\text{H} $$ \mathrm{e}+\mathrm{H}_{2}^{+}\rightarrow \mathrm{H}+\mathrm{H} $Dissociative recombination[35]
    $ \text{e}+\text{H}_{3}^{+}\rightarrow \text{e}+2\text{H}+{\text{H}}^{+} $$ \mathrm{e}+\mathrm{H}_{3}^{+}\rightarrow \mathrm{e}+2\mathrm{H}+{\mathrm{H}}^{+} $Dissociative excitation[34]
    $ \text{e}+\text{H}_{3}^{+}\rightarrow 3\text{H} $$ \mathrm{e}+\mathrm{H}_{3}^{+}\rightarrow 3\mathrm{H} $Recombination[35]
    $ \text{e}+\text{H}_{2}^{+}\rightarrow 2\text{e}+2{\text{H}}^{+} $$ \mathrm{e}+\mathrm{H}_{2}^{+}\rightarrow 2\mathrm{e}+{2\mathrm{H}}^{+} $Dissociative[32]
    $ \text{e}+{\text{H}}_{2}\rightarrow \text{e}+{\text{H}}_{2}(v=1-14) $$ \mathrm{e}+{\mathrm{H}}_{2}\rightarrow \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=1{, }2, 3) $Radiative decay and excitation: EV[36]
    $ \text{e}+{\text{H}}_{2}(v=1-14)\rightarrow \text{e}+2\text{H} $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=1{, }2, 3)\rightarrow \mathrm{e}+2\mathrm{H} $Dissociation[37]
    $ \text{e}+{\text{H}}_{2}(v=1-14)\rightarrow \text{H}+{\text{H}}^{-} $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=1{, }2, 3)\rightarrow \mathrm{H}+{\mathrm{H}}^{-} $Dissociative electron attachment: DA[32]
    $ \text{H}_{2}^{+}+{\text{H}}_{2}\rightarrow \text{H}_{3}^{+}+\text{H} $$ \mathrm{H}_{2}^{+}+{\mathrm{H}}_{2}\rightarrow \mathrm{H}_{3}^{+}+\mathrm{H} $Ion formation[38]
    $ \text{e}+{\text{H}}^{-}\rightarrow 2\text{e}+\text{H} $$ \mathrm{e}+{\mathrm{H}}^{-}\rightarrow 2\mathrm{e}+\mathrm{H} $Electron detachment: ED[34]
    $ \text{H}_{2}^{+}+{\text{H}}^{-}\rightarrow \text{H}+{\text{H}}_{2} $$ \mathrm{H}_{2}^{+}+{\mathrm{H}}^{-}\rightarrow \mathrm{H}+{\mathrm{H}}_{2} $Mutual neutralization: MN[39]
    $ \text{H}_{3}^{+}+{\text{H}}^{-}\rightarrow 2{\text{H}}_{2} $Mutual neutralization: MN[39]
    $ \text{H}+{\text{H}}^{-}\rightarrow \text{e}+{\text{H}}_{2} $$ \mathrm{H}_{3}^{+}+{\mathrm{H}}^{-}\rightarrow 2{\mathrm{H}}_{2} $Associative detachment: AD[39]
    $ \text{H}_{3}^{+}+\text{wall}\rightarrow {\text{H}}_{2}+\text{H} $Ion wall recombination[40]
    $ \text{H}_{2}^{+}+\text{wall}\rightarrow {\text{H}}_{2} $Ion wall recombination[40]
    $ {\text{H}}^{+}+\text{wall}\rightarrow \text{H} $Ion wall recombination[40]
    $ \text{H}+\mathrm{H}+\mathrm{wall}\rightarrow {\text{H}}_{2} $$ \mathrm{H}+{\mathrm{H}}^{-}\rightarrow \mathrm{e}+{\mathrm{H}}_{2} $H wall recombination[41,42]
    $ \text{H}(\text{n}=2, 3)+\text{wall}\rightarrow \text{H} $$ \mathrm{H}_{3}^{+}+\mathrm{wall}\rightarrow {\mathrm{H}}_{2}+\mathrm{H} $H(n) wall recombination[41,43]
    $ {\text{H}}_{2}(v=1-14)+\text{wall}\rightarrow {\text{H}}_{2} $Vibrational de-excitation: WD[41,44]
    $ {\text{H}}^{-}+\text{wall}\rightarrow \text{H} $$ \rightarrow {\mathrm{H}}_{2} $Ion wall recombination[45]
    下载: 导出CSV
  • [1]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [2]

    赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年 73 215201

    Zhao M L, Xing S Y, Tang W, Zhang Y R, Gao F, Wang Y N 2024 Acta Phys. Sin. 73 215201

    [3]

    Yamada Y, Yamada T, Tasaka S, Inagaki N 1996 Macromolecules 29 4331Google Scholar

    [4]

    Lucovsky G, Richard P D, Tsu D V, Lin S Y, Markunas R J 1986 J. Vac. Sci. Technol. A 4 681Google Scholar

    [5]

    Guo Y N, Ong T M B, Xu S Y 2019 Appl. Surf. Sci. 487 146Google Scholar

    [6]

    Pae J Y, Medwal R, Vas J V, Matham M V, Rawat R S 2019 J. Vac. Sci. Technol. B 37 041201

    [7]

    Kim B, Lee N, Lee J, Park T, Park H, Kim Y, Jin C, Lee D, Kim H, Jeon H 2021 Appl. Surf. Sci. 541 148482Google Scholar

    [8]

    Claflin B, Grzybowski G J, Ware M E, Zollner S, Kiefer A M 2020 Front. Mater. 7 44Google Scholar

    [9]

    Erwine P, Camille P E, Laurène Y, Gaspard T, Sylvain D 2019 J. Vac. Sci. Technol. A 37 040601

    [10]

    Volynets V, Barsukov Y, Kim G, Jung J E, Nam S K, Han K, Huang S, Kushner M J 2020 J. Vac. Sci. Technol. A 38 023007Google Scholar

    [11]

    Huang S, Volynets V, Hamilton J R, Nam S K, Song I C, Lu S Q, Tennyson J, Kushner M J 2018 J. Vac. Sci. Technol. A 36 021305Google Scholar

    [12]

    Yang K C, Shin Y J, Tak H W, Lee W, Lee S B, Yeom G Y 2019 Vacuum 168 108802Google Scholar

    [13]

    Wang P Y, Xing S Y, Han D M, Zhang Y R, Li Y, Zhou C, Gao F, Wang Y N 2024 Plasma Sci. Technol. 26 125401Google Scholar

    [14]

    Li H, Liu Y, Zhang Y R, Gao F, Wang Y N 2017 J. Appl. Phys. 121 233302Google Scholar

    [15]

    Tsankov T, Kiss’ovski Z, Djermanova N, Kolev S 2006 Plasma Process. Polym. 3 151Google Scholar

    [16]

    Gangoli S P, Johnson A D, Fridman A A, Pearce R V, Gutsol A F, Dolgopolsky A 2007 J. Phys. D: Appl. Phys. 40 5140Google Scholar

    [17]

    Zhang A X, Lee M Y, Lee H W, Moon H J, Chung C W 2021 Plasma Sources Sci. Technol. 30 025009Google Scholar

    [18]

    Van Herpen M M J W, Klunder D J W, Soer W A, Moors R, Banine V 2010 Chem. Phys. Lett. 484 197Google Scholar

    [19]

    Pachecka M, Sturm J M, van de Kruijs R W E, Lee C J, Bijkerk F 2016 AIP Adv. 6 075222Google Scholar

    [20]

    Braginsky O V, Kovalev A S, Lopaev D V, Malykhin E M, Rakhimova T V, Rakhimov A T, Vasilieva A N, Zyryanov S M, Koshelev K N, Krivtsun V M, van Kaampen M, Glushkov D 2012 J. Appl. Phys. 111 093304Google Scholar

    [21]

    Maffini A, Uccello A, Dellasega D, Passoni M 2016 Nucl. Fusion 56 086008Google Scholar

    [22]

    Sporre J, Lofgren R E, Ruzic D N, Khodykin O V, Myers D W 2011 Proc. SPIE Extreme Ultraviolet (EUV) Lithography II 796929

    [23]

    Wang S S, Ye Z B, Wu A D, Gao T, Wei J J, Gou F J 2025 J. Alloy. Compd. 1030 180912Google Scholar

    [24]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd edn) (New York: Wiley

    [25]

    Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J, Wang Y N 2023 Plasma Sci. Technol. 25 105601Google Scholar

    [26]

    Lishev S T, Shivarova A P, Tarnev K H 2011 J. Plasma Phys. 77 469Google Scholar

    [27]

    Lishev S, Schiesko L, Wünderlich D, Wimmer C, Fantz U 2018 Plasma Sources Sci. Technol. 27 125008Google Scholar

    [28]

    Smirnov B M 2015 Theory of Gas Discharge Plasma (Cham: Springer International Publishing

    [29]

    Zhang Y, Yang W, Lyu X Y, Gao F, Wang Y N 2025 J. Appl. Phys. 138 023301.Google Scholar

    [30]

    Xing S Y, Gao F, Zhang Y R, Zhao M, Lei G J, Wang Y N 2024 Nucl. Fusion 64 056015Google Scholar

    [31]

    Petrov G M, Giuliani J L 2001 J. Appl. Phys. 90 619Google Scholar

    [32]

    Janev R K, Reiter D, Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Jülich: Forschungszentrum Zentralbibliothek

    [33]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B j, Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913Google Scholar

    [34]

    Janev R K, Langer W D, Jr. Evans K 1989 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer

    [35]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [36]

    Celiberto R, Janev R K, Laricchiuta A, Capitelli M, Wadehra J M, Atems D E 2001 At. Data Nucl. Data Tables 77 161Google Scholar

    [37]

    Celiberto R, Capitelli M, Laricchiuta A 2002 Phys. Scr. T 96 32

    [38]

    Bowers M T, Elleman D D, King J 1969 J. Chem. Phys. 50 4787Google Scholar

    [39]

    Matveyev A A, Silakov V P 1995 Plasma Sources Sci. Technol. 4 606Google Scholar

    [40]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [41]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [42]

    Gorse C, Capitelli M, Bacal M, Bretagne J, Laganà A 1987 Chem. Phys. 117 177Google Scholar

    [43]

    Averkin S N, Gatsonis N A, Olson L 2015 IEEE Trans. Plasma Sci. 43 1926Google Scholar

    [44]

    Hiskes J R, Karo A M 1989 Appl. Phys. Lett. 54 508Google Scholar

    [45]

    Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G, Kohen N 2011 Plasma Sources Sci. Technol. 20 015002Google Scholar

  • [1] 安彦霖, 赵明亮, 罗倩, 高飞, 王友年. 基于多种诊断方法的氮与氩氮混合等离子体中性气体温度. 物理学报, doi: 10.7498/aps.75.20251240
    [2] 顾冰冰, 方骏林, 徐少锋, 郭颖, 石建军. 微结构诱导电场畸变下混合放电的特性与增强机理. 物理学报, doi: 10.7498/aps.74.20251303
    [3] 张晖, 韩宁, 孟显, 曹进文, 孙文进, 李梦天, 耿金越, 黄河激. 氩气感应耦合等离子体非平衡特性分析. 物理学报, doi: 10.7498/aps.74.20251186
    [4] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究. 物理学报, doi: 10.7498/aps.73.20240952
    [5] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, doi: 10.7498/aps.72.20230686
    [6] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究. 物理学报, doi: 10.7498/aps.71.20220948
    [7] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [8] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [9] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究. 物理学报, doi: 10.7498/aps.61.165203
    [10] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, doi: 10.7498/aps.61.015204
    [11] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, doi: 10.7498/aps.58.5436
    [12] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, doi: 10.7498/aps.57.5123
    [13] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, doi: 10.7498/aps.57.1796
    [14] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, doi: 10.7498/aps.56.977
    [15] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, doi: 10.7498/aps.55.3494
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, doi: 10.7498/aps.55.5311
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, doi: 10.7498/aps.54.1653
    [18] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, doi: 10.7498/aps.53.3394
    [19] 傅广生, 王金国, 李晓苇, 韩理, 吕福润. SiH4激光等离子体内自由基反应动力学研究. 物理学报, doi: 10.7498/aps.40.2024
    [20] 洪明苑, 叶茂福, 孙湘. 感应磁场压缩下氢等离子体中巴耳末系谱线的斯塔克加宽. 物理学报, doi: 10.7498/aps.21.1606
计量
  • 文章访问数:  548
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-04
  • 修回日期:  2025-10-14
  • 上网日期:  2025-10-24

/

返回文章
返回