Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in perovskite solar cells based on different buffer layer materials

Chen Yong-Liang Tang Ya-Wen Chen Pei-Run Zhang Li Liu Qi Zhao Ying Huang Qian Zhang Xiao-Dan

Citation:

Progress in perovskite solar cells based on different buffer layer materials

Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan
PDF
HTML
Get Citation
  • Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.
      Corresponding author: Huang Qian, carolinehq@nankai.edu.cn
    [1]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [3]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar

    [5]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [7]

    Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png

    [10]

    Qiu J H, Yang S H 2019 Chem. Rec. 20 209

    [11]

    Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [12]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [13]

    Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar

    [14]

    C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar

    [15]

    Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar

    [16]

    Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar

    [17]

    Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar

    [18]

    Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar

    [19]

    Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar

    [20]

    Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar

    [21]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar

    [22]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar

    [23]

    Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar

    [24]

    Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [25]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [26]

    L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar

    [27]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar

    [28]

    Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar

    [29]

    Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar

    [30]

    Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar

    [31]

    Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar

    [32]

    Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar

    [33]

    Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar

    [34]

    Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar

    [35]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar

    [36]

    Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [37]

    Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar

    [38]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [39]

    Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar

    [40]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [41]

    Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280

    [42]

    Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar

    [43]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [44]

    Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar

    [45]

    Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar

  • 图 1  钙钛矿太阳电池的结构图和能级图 (a) 结构图; (b) 能级图

    Figure 1.  Structure and energy band diagram of perovskite solar cell: (a) Structure; (b) Energy band diagram.

    图 2  空穴传输层与阳极之间的缓冲层能级图

    Figure 2.  Energy level diagram of the buffer layer between the hole transport layer and the anode.

    图 3  有无浓度25 mg·ml–1NiO缓冲层的50个单独钙钛矿太阳电池的效率分布图[14]

    Figure 3.  PCE distribution of 50 individual PSCs with and without 25 mg·ml–1 NiO buffer layer[14].

    图 4  电子传输层与阴极之间的缓冲层能级图

    Figure 4.  Energy level diagram of the buffer layer between the electron transport layer and the cathode.

    图 5  不同TPBi缓冲层厚度钙钛矿太阳电池I-V图及不同结构电池的EQE图[26] (a) I-V图; (b) EQE曲线

    Figure 5.  I-V diagram of perovskite solar cell with different TPBi buffer layer thickness and different structure cell EQE diagram[26]: (a) I-V diagram; (b) EQE diagram.

    图 6  Perovskite/PCBM和Perovskite/PCBM/Zr(Ac)4薄膜的AFM图及其表面I、N、Pb元素含量的XPS图谱; 有无Zr(Ac)4缓冲层钙钛矿太阳电池的最优电池J-V[30] (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS图谱; (d) J-V

    Figure 6.  AFM diagram of Perovskite/PCBM and Perovskite/PCBM/Zr(Ac)4 films and XPS spectra showing the different amount of I, N and Pb elements on the films surface; the J-V characteristics of the optimized device perovskite solar cell with and without Zr(Ac)4 buffer layer[30]: (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS spectra; (d) J-V diagram.

    图 7  ITO/SnO2/perovskite与ITO/PEI/SnO2/perovskite的AFM图、PL图及有无PEI缓冲层最优电池的入射光子-电流转换效率图(IPCE)[20] (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL图; (d) IPCE图

    Figure 7.  The AFM images and the steady state PL spectra of ITO/PEI/SnO2/perovskite and ITO/SnO2/perovskite, and the IPCE spectra of the champion devices with and without PEI buffer layer[20]: (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL spectra; (d) IPCE spectra.

    图 8  空穴传输层与吸收层之间的缓冲层能级图

    Figure 8.  Energy level diagram of the buffer layer between the hole transport layer and the absorption layer.

    图 9  优化的GO作缓冲层的钙钛矿太阳电池J-V及重要参数图[33]

    Figure 9.  The J-V characteristics of the optimized device and important parameter table of perovskite solar cell with GO buffer layer[33].

    图 10  1: Glass/Perovskite; 2: Glass/CuPc/Perovskite; 3: Glass/CuPc/Al2O3/Perovskite; 4: Glass/CuPc/GO/Perovskite结构的PL图[18]

    Figure 10.  The luminescence spectra of structure of 1: Glass/Perovskite, 2: Glass/CuPc/Perovskite, 3: Glass/CuPc/Al2O3/Perovskite and 4: Glass/CuPc/GO/Perovskite[18]

    图 11  电子传输层与吸收层之间的缓冲层能级图

    Figure 11.  Energy level diagram of the buffer layer between the electron transport layer and the absorption layer.

    图 12  在85 ℃下, 对两种不同厚度的PCBM缓冲层加热168小时后, 获得的基于CH3NH3PbI3吸收层钙钛矿太阳电池归一化的Voc, Jsc, FF和PCE[41]

    Figure 12.  After heating 168 hours of two different thicknesses of PCBM buffer at 85 ℃, obtained a normalized Voc, Jsc, FF and PCE based on CH3NH3PbI3 absorber layer perovskite solar cells[41].

    图 13  ITO/ZnO/TiO2(x cycle)/钙钛矿结构的XRD图(a)和PL图(b)[17]

    Figure 13.  XRD patterns (a) and PL spectra (b) of perovskite films on Glass/ITO/ZnO/TiO2 (x cycles) substrates with various x values[17].

    图 14  PET/SnO2/Perovskite和PET/SnO2/C60-SAM/Perovskite结构的PL图谱(a)和 TRPL图谱(b)[45]

    Figure 14.  Steady-state photoluminescence spectra and photoluminescence decay of perovskite films with and without C60-SAM[45]: (a) PL spectra; (b) TRPL spectra.

  • [1]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [3]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar

    [5]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [7]

    Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png

    [10]

    Qiu J H, Yang S H 2019 Chem. Rec. 20 209

    [11]

    Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [12]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [13]

    Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar

    [14]

    C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar

    [15]

    Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar

    [16]

    Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar

    [17]

    Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar

    [18]

    Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar

    [19]

    Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar

    [20]

    Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar

    [21]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar

    [22]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar

    [23]

    Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar

    [24]

    Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [25]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [26]

    L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar

    [27]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar

    [28]

    Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar

    [29]

    Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar

    [30]

    Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar

    [31]

    Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar

    [32]

    Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar

    [33]

    Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar

    [34]

    Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar

    [35]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar

    [36]

    Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [37]

    Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar

    [38]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [39]

    Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar

    [40]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [41]

    Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280

    [42]

    Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar

    [43]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [44]

    Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar

    [45]

    Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar

  • [1] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [11] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [12] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] Zhang Xian-Fei, Wang Ling-Ling, Zhu Hai, Zeng Cheng. Numerical study on salt finger at interface between fluid layer and porous layer by single-domain approach. Acta Physica Sinica, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [14] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [15] Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Duan Zhuo-Ping, Hu Xiao-Mian. Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface. Acta Physica Sinica, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [16] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [17] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [18] Gong Wei, Xu Zheng, Zhao Su-Ling, Liu Xiao-Dong, Yang Qian-Qian, Fan Xing. Effects of NPB anode buffer layer on the performances of inverted bulk heterojunction polymer solar cells. Acta Physica Sinica, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [19] Liu Bo-Fei, Bai Li-Sha, Zhang De-Kun, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Effect of a-Si:H interface buffer layer on the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [20] Liu Rui, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Cao Xiao-Ning, Kong Chao, Cao Wen-Zhe, Gong Wei. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
Metrics
  • Abstract views:  18483
  • PDF Downloads:  876
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2020
  • Accepted Date:  27 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回