Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Neutron capture cross section measurements for natLu with different thickness

Wang De-Xin, Zhang Su-Ya-La-Tu, Jiang Wei, Ren Jie, Wang Jin-Cheng, Tang Jing-Yu, Ruan Xi-Chao, Wang Hong-Wei, Chen Zhi-Qiang, Huang Mei-Rong, Tang Xin, Hu Xin-Rong, Li Xin-Xiang, Liu Long-Xiang, Liu Bing-Yan, Sun Hui, Zhang Yue, Hao Zi-Rui, Song Na, Li Xue, Niu Dan-Dan, Li Guo, Meng Gu-Fu
PDF
HTML
Get Citation
  • The C6D6 detection system coupling with the pulse height weighting technique is widely used for experimentally measuring the neutron capture cross section. The thickness of sample used in the experiment directly affects the neutron beam time and the reliability of the experimental data. In the present work, we compare the lutetium (Lu) neutron capture reaction cross sections among the samles with different thickness, obtained by the C6D6 detection system of the back-streaming white neutron beam line at China spallation Neutron Source (CSNS back-n). The light response of the detection system is simulated with the consideration of the sample thickness by GEANT4 Monte Carlo simulation code. The 4th order polynomial pulse weight functions for different samples are determined by using the above light response function. In the experiment, the high precision capture yield distributions in the resonance energy region are obtained by measuring the longer flight distance and background. The experimental resonance parameters are deduced by analyzing the capture yield distribution with the R-matrix theory. The comparisons of the results of capture yield and the resonance parameters between the two groups show that the resonance curve of 1.06mm natLu sample changes due to its thickness effect, and there is a large difference between the experimental resonance parameters and ENDF/B-VIII.0 database. However, the experimental results of 0.207mm natLu sample can well accord with the ENDF/B-VIII. 0 data.
      Corresponding author: Zhang Su-Ya-La-Tu, zsylt@imun.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2019JQ01, 2018MS01009) and the National Natural Science Foundation of China (Grant Nos. U2032146, 11865010, 11765014, 11605097)
    [1]

    葛智刚, 陈永静 2015 科学通报 60 3087Google Scholar

    Ge Z G, Chen Y J 2015 Chin. Sci. Bull. 60 3087Google Scholar

    [2]

    阮锡超 2020 中国科学: 物理学 力学 天文学 55 5

    Ruan X C 2020 Scientia Sinica Physica, Mechanica & Astronomica. 55 5

    [3]

    刘世龙, 葛智刚, 阮锡超, 陈永静 2020 原子能科学技术 54 SupplGoogle Scholar

    Liu S L, Ge Z G, Ruan X C, Chen Y J 2020 Atomic Energy Sci. Tech. 54 SupplGoogle Scholar

    [4]

    Chen G C, Cao W T, Yu B S, Tang G Y, Shi Z M, Tao X 2012 Chin. Phys. C 36 9Google Scholar

    [5]

    Chadwick M B, Herman M, Oblozinsk P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [6]

    Barry D P, Leinweber G, Block R C, et al. 2013 Nucl. Sci. Eng. 174 188Google Scholar

    [7]

    Plompen A, Cabellos O, Jean C, et al. 2020 Eur. Phys. J. A 56 7Google Scholar

    [8]

    Ignatyuk A V, Fursov B I 2007 Proc. Int. Conf. on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 vol 2, p759

    [9]

    Tang J Y, Liu R, Zhang G H, et al. 2021 Chin. Phys. C 45 062001Google Scholar

    [10]

    Tang J Y, An Q, Bai J B, et al. 2021 Nucl. Sci. Tech. 32 11Google Scholar

    [11]

    李鑫祥, 刘龙祥, 蒋伟等 2020 核技术 43 080501Google Scholar

    Li X X, Liu L X, Jiang W, et al. 2020 J. Nucl. Tech. 43 080501Google Scholar

    [12]

    Zhang S, Chen Z Q, Han R, Liu X Q, Wada R, Lin W P, Jin Z X, Xi Y Y, Liu J L, Shi F D 2013 Chin. Phys. C 37 126003Google Scholar

    [13]

    Yan J, Liu R, Li C, et al. 2010 Chin. Phys. C 34 993Google Scholar

    [14]

    Hu X R, Fan G T, Jiang W et al. 2021 Nucl. Sci. Tech. 32 101Google Scholar

    [15]

    任杰, 阮锡超, 陈永浩等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y Het al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [16]

    Ren J, Ruan X C, Jiang W, et al. 2021 Nucl. Instrum. Methods A 985 164703Google Scholar

    [17]

    Lederer C, Colonna N, Domingo-Pardo C, et al. 2011 Phys. Rev. C 83 034608Google Scholar

    [18]

    Borella A, Aerts G, Gunsing F, et al. 2007 Nucl. Instrum. Methods A 577 626Google Scholar

    [19]

    鲍杰, 陈永浩, 张显鹏等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [20]

    Larson N M Oak Ridge National Laboratory Report No. ORNL/TM-9179/R6

    [21]

    Jiang B, Han J L, Jiang W, et al. 2021 Nucl. Instrum. Methods A 1013 165677Google Scholar

    [22]

    Li X X, Liu L X, Jiang W, et al. 2021 Phys. Rev. C 104 054302Google Scholar

    [23]

    Noguere G B, Heyse O J, Ebran A, Roig O 2019 Phys. Rev. C 100 065806Google Scholar

  • 图 1  C6D6 探测器实验光输出谱与模拟谱的比较

    Figure 1.  Comparison of C6D6 detector light output and Geant4 simulation results.

    图 2  C6D6 探测器的能量刻度结果

    Figure 2.  Energy calibration of C6D6 detector.

    图 3  (a) γ光输出谱; (b)权重函数; (c)原始探测效率曲线; (d)权重后的探测效率曲线

    Figure 3.  (a) Light output spectra; (b) weight function; (c) original detection efficiency; (d) weighted detection efficiency.

    图 4  权重计数谱对比, 黑线、绿线和红线分别表示Au靶、空靶和空靶归一到小于0.3 eV能区Au靶的权重计数谱

    Figure 4.  Comparisons of weighted counts spectrum. Black, green and red lines indicate the spectrum of Au target, empty target and normalized empty target as Au target below 0.3 eV energy region, respectively.

    图 5  (a)本底形状分析; (b) natLu靶加吸收片的权重计数谱

    Figure 5.  (a) Background shape analysis; (b) weighted counting spectrum of natLu with filters.

    图 6  不同厚度natLu靶的中子俘获产额比较和SAMMY拟合结果

    Figure 6.  Comparison of capture yield with SAMMY fits of natLu targets with different thicknesses.

    图 7  1.25—1.85 eV范围内 natLu中子俘获产额分布, 其中, 黑色实心点为实验数据、红色实线为SAMMY拟合结果、绿色实线为ENDF/ B-VIII.0评价数据的SAMMY计算. 图(a)和(b)分别为0.207和1.06 mm厚的natLu结果

    Figure 7.  Neutron capture yield of natLu. Black solid circles indicate the experimental data, red and green lines indicate SAMMY fit of experimental data and SAMMY calculations of ENDF/B-VIII.0 evaluation data from 1.25 eV to 1.85 eV. Panel (a) and panel (b) show 0.207 and 1.06 mm thickness of natLu, respectively.

    图 8  1.85—6.5 eV范围内natLu中子俘获产额分布, 其中, 黑色实心点为实验数据、红色实线为SAMMY拟合结果、绿色实线为ENDF/ B-VIII.0评价数据的SAMMY计算. 图(a)和(b)分别为0.207和1.06 mm厚的natLu结果. 红色、粉色和蓝色箭头分别表示175Lu, 176Lu和 181Ta的共振能量

    Figure 8.  Neutron capture yield of natLu. Black solid circles indicate the experimental data, red and green lines indicate SAMMY fit of experimental data and SAMMY calculations of ENDF/B-VIII.0 evaluation data from 1.85 eV to 6.5 eV. Panel (a) and panel (b) show 0.207 and 1.06 mm thickness of natLu, respectively. Red, pink, and blue arrows indicate the energies of the 175Lu, 176Lu, and 181Ta resonances, respective.

    图 9  不同厚度natLu靶的共振因子比例及其高斯函数拟合结果

    Figure 9.  Resonance kernel ratio and its gaussian function fitting of natLu targets with different thicknesses.

    表 1  实验样品信息

    Table 1.  Sample information.

    厚度/mm直径/mm质量/mg面密度/(atom·b–1)
    natLu 1.06 30 7373.11 3.58820 × 10–3
    natLu 0.207 30 1439.84 7.00715 × 10–4
    197Au 0.1 30 1357.17 5.86721 × 10–4
    natPb 0.53 30 4249.75 1.74678 × 10–3
    59Co 0.4 80 17894.51 3.63240 × 10–3
    natAg 0.4 80 21091.40 2.34173 × 10–3
    DownLoad: CSV

    表 2  本实验结果与ENDF/B-VIII.0数据库及Noguere等[23]的共振因子对比

    Table 2.  Comparisons of resonance kernels of present experiment, ENDF/B-VIII.0 libraries and Noguere et al.[23].

    ER/eVElementIJgENDF/B-III.0 $ {R}_{\rm{k}} $natLu-0.207 mm $ {R}_{\rm{k}} $natLu-1.06 mm $ {R}_{\rm{k}} $Noguere-2019[23] $ {R}_{\rm{k}} $
    1.56176Lu7.07.50.530.2520.257 ± 0.0050.242 ± 0.002
    2.59175Lu3.54.00.560.1000.111 ± 0.0040.073 ± 0.0060.117 ± 0.005
    4.28181Ta3.54.00.562.0342.821 ± 0.0040.647 ± 0.003
    4.75175Lu3.54.00.560.1450.167 ± 0.0050.104 ± 0.0020.167 ± 0.006
    5.22175Lu3.53.00.440.6900.730 ± 0.0040.735 ± 0.0070.732 ± 0.017
    6.13176Lu7.07.50.530.7090.792 ± 0.0120.807 ± 0.016
    DownLoad: CSV
  • [1]

    葛智刚, 陈永静 2015 科学通报 60 3087Google Scholar

    Ge Z G, Chen Y J 2015 Chin. Sci. Bull. 60 3087Google Scholar

    [2]

    阮锡超 2020 中国科学: 物理学 力学 天文学 55 5

    Ruan X C 2020 Scientia Sinica Physica, Mechanica & Astronomica. 55 5

    [3]

    刘世龙, 葛智刚, 阮锡超, 陈永静 2020 原子能科学技术 54 SupplGoogle Scholar

    Liu S L, Ge Z G, Ruan X C, Chen Y J 2020 Atomic Energy Sci. Tech. 54 SupplGoogle Scholar

    [4]

    Chen G C, Cao W T, Yu B S, Tang G Y, Shi Z M, Tao X 2012 Chin. Phys. C 36 9Google Scholar

    [5]

    Chadwick M B, Herman M, Oblozinsk P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [6]

    Barry D P, Leinweber G, Block R C, et al. 2013 Nucl. Sci. Eng. 174 188Google Scholar

    [7]

    Plompen A, Cabellos O, Jean C, et al. 2020 Eur. Phys. J. A 56 7Google Scholar

    [8]

    Ignatyuk A V, Fursov B I 2007 Proc. Int. Conf. on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 vol 2, p759

    [9]

    Tang J Y, Liu R, Zhang G H, et al. 2021 Chin. Phys. C 45 062001Google Scholar

    [10]

    Tang J Y, An Q, Bai J B, et al. 2021 Nucl. Sci. Tech. 32 11Google Scholar

    [11]

    李鑫祥, 刘龙祥, 蒋伟等 2020 核技术 43 080501Google Scholar

    Li X X, Liu L X, Jiang W, et al. 2020 J. Nucl. Tech. 43 080501Google Scholar

    [12]

    Zhang S, Chen Z Q, Han R, Liu X Q, Wada R, Lin W P, Jin Z X, Xi Y Y, Liu J L, Shi F D 2013 Chin. Phys. C 37 126003Google Scholar

    [13]

    Yan J, Liu R, Li C, et al. 2010 Chin. Phys. C 34 993Google Scholar

    [14]

    Hu X R, Fan G T, Jiang W et al. 2021 Nucl. Sci. Tech. 32 101Google Scholar

    [15]

    任杰, 阮锡超, 陈永浩等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y Het al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [16]

    Ren J, Ruan X C, Jiang W, et al. 2021 Nucl. Instrum. Methods A 985 164703Google Scholar

    [17]

    Lederer C, Colonna N, Domingo-Pardo C, et al. 2011 Phys. Rev. C 83 034608Google Scholar

    [18]

    Borella A, Aerts G, Gunsing F, et al. 2007 Nucl. Instrum. Methods A 577 626Google Scholar

    [19]

    鲍杰, 陈永浩, 张显鹏等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [20]

    Larson N M Oak Ridge National Laboratory Report No. ORNL/TM-9179/R6

    [21]

    Jiang B, Han J L, Jiang W, et al. 2021 Nucl. Instrum. Methods A 1013 165677Google Scholar

    [22]

    Li X X, Liu L X, Jiang W, et al. 2021 Phys. Rev. C 104 054302Google Scholar

    [23]

    Noguere G B, Heyse O J, Ebran A, Roig O 2019 Phys. Rev. C 100 065806Google Scholar

  • [1] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [3] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [4] Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu. Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil. Acta Physica Sinica, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [5] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [6] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [7] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [8] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [9] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [10] Zhan Xia, Joe Kelleher, Gao Jian-Bo, Ma Yan-Ling, Chu Ming-Qiang, Zhang Shu-Yan, Zhang Peng, Sanjooram Paddea, Gong Zhi-Feng, Hou Xiao-Dong. High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment. Acta Physica Sinica, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [11] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [12] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [13] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [14] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [15] Wen Zhi-Wen, Qi Hui-Rong, Zhang Yu-Lian, Wang Hai-Yun, Liu Ling, Wang Yan-Feng, Zhang Jian, Li Yu-Hong, Sun Zhi-Jia. Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer. Acta Physica Sinica, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [16] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [17] Wang Sheng, Zou Yu-Bin, Wen Wei-Wei, Li Hang, Liu Shu-Quan, Wang Hu, Lu Yuan-Rong, Tang Guo-You, Guo Zhi-Yu. Study of coded source neutron imaging based on a compact accelerator. Acta Physica Sinica, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [18] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [19] YAO LI-SHAN, JIN YU-LING, CAI DUN-JIU. A STUDY OF THE SYSTEMATICS FOR (n,T) AND (n, 3He) REACTION CROSS SECTIONS AT 14 MeV. Acta Physica Sinica, 1993, 42(1): 17-24. doi: 10.7498/aps.42.17
    [20] FU DE-JI, CAI YAN-HUANG, XIA KE-DING. CALCULATION OF NEUTRON CAPTURE CROSS SECTIONS OF Th232 AND U238. Acta Physica Sinica, 1974, 23(3): 52-60. doi: 10.7498/aps.23.52-2
Metrics
  • Abstract views:  5158
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2021
  • Accepted Date:  03 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回