Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas

Tong Lei Zhao Ming-Liang Zhang Yu-Ru Song Yuan-Hong Wang You-Nian

Citation:

Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas

Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian
PDF
HTML
Get Citation
  • In the etching process, a bias source is usually applied to the substrate of the inductively coupled plasma (ICP) to realize independent modulation of the ion energy and ion flux. In this work, a hybrid model, i.e. a global model combined bi-directionally with a fluid sheath model, is employed to investigate the plasma properties and ion energy distribution function (IEDF) in biased inductively coupled Ar/O2/Cl2 plasmas. The results indicate that at a bias frequency of 2.26 MHz, the Cl ion density and ClO+ ion density first increase with bias voltage rising, and then they decrease, and finally they rise again, which is different from the densities of other charged species, such as O and Cl atoms. At the bias frequency of 13.56 MHz and 27.12 MHz, except Cl and $ {\text{Cl}}_2^ + $ ions, the evolutions of other species densities with bias voltage are similar to the results at lower bias frequency. The evolution of the species densities with bias frequency depends on the bias voltage. For instance, in the low bias voltage range (< 200 V), the densities of charges species, O and Cl atoms increase with bias frequency increasing due to a significant increase in the heating of the plasma by the bias source. However, when the bias voltage is high, say, higher than 300 V, except $ {\text{Cl}}_2^ + $ and Cl ions, the densities of other charged species, O and Cl atoms first decrease with bias frequency increasing and then they increase due to a decrease and then an increase in the heating of the plasma by the bias source. In addition, as the bias frequency increases, the peak separation of IEDF becomes narrow, the high energy peak and low energy peak approach each other and they almost merge into one peak at high bias frequency. The results obtained in this work are of significant importance in improving the etching process.
      Corresponding author: Zhang Yu-Ru, yrzhang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275041, 11935005, 12020101005).
    [1]

    Efremov A M, Kim D P, Kim C I 2004 IEEE Trans. Plasma Sci. 32 1344Google Scholar

    [2]

    Efremov A M, Kim D P, Kim C I 2003 J. Vac. Sci. Technol., A 21 1568Google Scholar

    [3]

    Bogaerts A, Neyts E, Gijbels R, Van Der Mullen J 2002 Spectrochim Acta, Part B 57 609Google Scholar

    [4]

    Choi S K, Kim D P, Kim C I, Chang E G 2001 J. Vac. Sci. Technol., A 19 1063Google Scholar

    [5]

    Lee Y J, Han H R, Lee J, Yeom G Y 2000 Surf. Coat. Technol. 131 257Google Scholar

    [6]

    Wen D Q, Liu W, Gao F, Lieberman M A, Wang Y N 2016 Plasma Sources Sci. Technol. 25 045009Google Scholar

    [7]

    Wen D, Zhang Y, Lieberman M A, Wang Y 2017 Plasma Processes Polym. 14 1600100Google Scholar

    [8]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol., A 33 061303Google Scholar

    [9]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 071501Google Scholar

    [10]

    Lee H C, Chung C W 2012 Appl. Phys. Lett. 101 244104Google Scholar

    [11]

    Lee H C, Bang J Y, Chung C W 2011 Thin Solid Films 519 7009Google Scholar

    [12]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol., A 13 368Google Scholar

    [13]

    Gudmundsson J T 2004 J. Phys. D: Appl. Phys. 37 2073Google Scholar

    [14]

    Jung J, Kim M S, Park J, Lim C M, Hwang T W, Seo B J, Chung C W 2023 Phys. Plasmas 30 023504Google Scholar

    [15]

    Tong L, Zhang Y R, Huang J W, Zhao M L, Wen D Q, Song Y H, Wang Y N 2021 Phys. Plasmas 28 053512Google Scholar

    [16]

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2023 J. Phys. D: Appl. Phys. 56 365202

    [17]

    Khater M H, Overzet L J 2004 Plasma Sources Sci. Technol. 13 466Google Scholar

    [18]

    Dai Z L, Zhang S Q, Wang Y N 2013 Vacuum 89 197Google Scholar

    [19]

    Zhang S Q, Dai Z L, Song Y H, Wang Y N 2014 Vacuum 99 180Google Scholar

    [20]

    Levko D, Raja L L 2022 J. Vac. Sci. Technol., B 40 052205Google Scholar

    [21]

    Levko D, Upadhyay R R, Suzuki K, Raja L L 2023 J. Vac. Sci. Technol., A 41 012205Google Scholar

    [22]

    Malyshev M V, Donnelly V M, Colonell J I, Samukawa S 1999 J. Appl. Phys. 86 4813Google Scholar

    [23]

    Malyshev M V, Donnelly V M 2000 Plasma Sources Sci. Technol. 9 353Google Scholar

    [24]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [25]

    Malyshev M V, Donnelly V M 2001 J. Appl. Phys. 90 1130Google Scholar

    [26]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M, Herman I P 2000 J. Appl. Phys. 88 2246Google Scholar

    [27]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 88 6207Google Scholar

    [28]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642Google Scholar

    [29]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 015001Google Scholar

    [30]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [31]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [32]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [33]

    Gudmundsson J T, Hjartarson A T, Thorsteinsson E G 2012 Vacuum 86 808Google Scholar

    [34]

    Zhang Y R, Zhao Z Z, Xue C, Gao F, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 295204

    [35]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [36]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶, 费嘉瑞 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y, Fei J R 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [37]

    Smith S A, Lampert W V, Rajagopal P, Banks A D, Thomson D, Davis R F 2000 J. Vac. Sci. Technol., A 18 879Google Scholar

    [38]

    Lee J M, Chang K M, Lee I H, Park S J 2000 J. Vac. Sci. Technol., B 18 1409Google Scholar

    [39]

    Taube A, Kamiński M, Ekielski M, et al. 2021 Mater. Sci. Semicond. Process. 122 105450Google Scholar

    [40]

    Chung C W, Chung I 2000 J. Vac. Sci. Technol., A 18 835Google Scholar

    [41]

    Park J S, Kim T H, Choi C S, Hahn Y B 2002 Korean J. Chem. Eng. 19 486Google Scholar

    [42]

    Kwon K H, Efremov A, Yun S J, Chun I, Kim K 2014 Thin Solid Films 552 105Google Scholar

    [43]

    Kang S, Efremov A, Yun S J, Son J, Kwon K H 2013 Plasma Chem. Plasma Process. 33 527Google Scholar

    [44]

    Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D: Appl. Phys. 42 095204Google Scholar

    [45]

    Tinck S, Boullart W, Bogaerts A 2011 Plasma Sources Sci. Technol. 20 045012Google Scholar

    [46]

    Tinck S, Bogaerts A, Shamiryan D 2011 Plasma Processes Polym. 8 490Google Scholar

    [47]

    Hsu C C, Coburn J W, Graves D B 2006 J. Vac. Sci. Technol., A 24 1Google Scholar

    [48]

    Efremov A, Amirov I, Izyumov M 2023 Vacuum 207 111664Google Scholar

    [49]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [50]

    Schulze J, Schüngel E, Czarnetzki U 2012 Appl. Phys. Lett. 100 024102Google Scholar

    [51]

    Ahr P, Schüngel E, Schulze J, Tsankov T V, Czarnetzki U 2015 Plasma Sources Sci. Technol. 24 044006Google Scholar

    [52]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc.) p268

    [53]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N A 2021 Acta Phys. Sin. 70 095206Google Scholar

    [54]

    Yang W, Zhao S X, Wen D Q, Liu W, Liu Y X, Li X C, Wang Y N 2016 J. Vac. Sci. Technol., A 34 031305Google Scholar

    [55]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

    [56]

    Proto A 2021 Ph. D. Dissertation (Iceland: University of Iceland

    [57]

    Stafford L, Khare R, Guha J, Donnelly V M, Poirier J S, Margot J 2009 J. Phys. D: Appl. Phys. 42 055206Google Scholar

    [58]

    Guha J, Donnelly V M 2009 J. Appl. Phys. 105 113307Google Scholar

    [59]

    Boyd R L F, Thomson J B 1959 Proc. R. Soc. London, Ser. A 252 102Google Scholar

    [60]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [61]

    Dai Z L, Wang Y N, Ma T C 2002 Phys. Rev. E 65 036403Google Scholar

    [62]

    Dai Z L, Wang Y N 2004 Phys. Rev. E 69 036403Google Scholar

    [63]

    Dai Z L, Wang Y N 2002 Phys. Rev. E 66 026413Google Scholar

    [64]

    Dai Z L, Wang Y N 2002 J. Appl. Phys. 92 6428Google Scholar

    [65]

    Dai Z L, Wang Y N 2003 Surf. Coat. Technol. 165 224Google Scholar

    [66]

    Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A, Wang Y N 2014 J. Appl. Phys. 115 233303Google Scholar

    [67]

    Hong Y H, Kim T W, Kim B S, Lee M Y, Chung C W 2022 Plasma Sources Sci. Technol. 31 075008Google Scholar

    [68]

    Huang S, Gudmundsson J T 2013 Plasma Sources Sci. Technol. 22 055020Google Scholar

    [69]

    Hennad A, Yousfi M 2010 J. Phys. D: Appl. Phys. 44 025201Google Scholar

    [70]

    Manenschijn A, Janssen G C A M, Van Der Drift E, Radelaar S 1991 J. Appl. Phys. 69 1253Google Scholar

    [71]

    Hayden C, Gahan D, Hopkins M B 2009 Plasma Sources Sci. Technol. 18 025018Google Scholar

    [72]

    Gahan D, Dolinaj B, Hopkins M B 2008 Rev. Sci. Instrum. 79 033502Google Scholar

    [73]

    Edelberg E A, Aydil E S 1999 J. Appl. Phys. 86 4799Google Scholar

    [74]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 J. Vac. Sci. Technol., A 17 506Google Scholar

    [75]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 Rev. Sci. Instrum. 70 2689Google Scholar

  • 图 1  混合模型示意图

    Figure 1.  Schematic of configuration for the hybrid model.

    图 2  不同偏压频率下, 基态中性粒子密度随偏压幅值的变化

    Figure 2.  Evolutions of the densities of ground state neutral particles with bias voltage for different bias frequencies.

    图 3  不同偏压频率下, 吸收功率和损失功率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Figure 3.  Evolutions of the power deposition and power loss with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 4  不同偏压频率下, ClO分子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Figure 4.  Evolutions of the generation and loss rates of ClO molecules with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 5  不同偏压频率下, 带电粒子密度随偏压幅值的变化 (a) Ar+; (b) $ {\text{O}}_2^ + $; (c) O+; (d) O; (e) $ {\text{Cl}}_2^ + $; (f) Cl+; (g) Cl; (h) ClO+; (i) 电子密度

    Figure 5.  Evolutions of the densities of charged species with bias voltage for different bias frequencies: (a) Ar+; (b) $ {\text{O}}_2^ + $; (c) O+; (d) O; (e) $ {\text{Cl}}_2^ + $; (f) Cl+; (g) Cl; (h) ClO+; (i) electron density.

    图 6  不同偏压频率下, Cl离子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Figure 6.  Evolutions of the generation and loss rates of Cl ions with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 7  不同偏压频率下, ClO+离子的产生速率和损失速率随偏压幅值的变化 (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz

    Figure 7.  Evolutions of the generation and loss rates of ClO+ ions with bias voltage for different bias frequencies: (a) 2.26 MHz; (b) 6.78 MHz; (c) 13.56 MHz; (d) 27.12 MHz.

    图 8  偏压频率为27.12 MHz时, $ {\text{Cl}}_2^ + $离子的产生速率和损失速率随偏压幅值的变化

    Figure 8.  Evolutions of the generation and loss rates of $ {\text{Cl}}_2^ + $ ions with bias voltage at bias frequency of 27.12 MHz.

    图 9  不同偏压频率下, 解离率随偏压幅值的变化 (a) Cl2 (ν = 0); (b) O2

    Figure 9.  Evolutions of the dissociation fraction with bias voltage for different bias frequencies: (a) Cl2 (ν = 0); (b) O2

    图 10  不同偏压频率下, 电负度随偏压幅值的变化

    Figure 10.  Evolution of the electronegativity with bias voltage for different bias frequencies.

    图 11  不同偏压频率和幅值下, Ar+离子的离子能量角度分布

    Figure 11.  IEADFs of Ar+ ions for different bias frequencies and bias voltages.

    图 12  偏压幅值为125 V, 不同偏压频率下各离子的能量分布 (a) $ {\text{O}}_2^ + $; (b) O+; (c) $ {\text{Cl}}_2^ + $; (d) Cl+

    Figure 12.  IEDFs of ions for different bias frequencies at bias voltage of 125 V: (a) $ {\text{O}}_2^ + $; (b) O+; (c) $ {\text{Cl}}_2^ + $; (d) Cl+.

    表 1  Ar/O2/Cl2混合气体放电中考虑的粒子

    Table 1.  Plasma species considered in Ar/O2/Cl2 discharges.

    基态中性粒子 Ar, O2, O3, O, Cl2 (ν = 0), Cl, ClO
    激发态中性
    粒子
    Arm, Arr, Ar(4p), O2(a), O(D),
    Cl2 (ν = 1), Cl2 (ν = 2), Cl2 (ν = 3)
    正离子 Ar+, $ {\text{O}}_2^ + $, O+, $ {\text{Cl}}_2^ + $, Cl+, ClO+
    负离子/电子 O, Cl, e
    DownLoad: CSV

    表 2  中性粒子与器壁的相互作用[6,29-32,35]

    Table 2.  Reactions of neutral species on the wall[6,29-32,35].

    No. Reaction ${\gamma _l}$
    1 ${\text{Cl + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{\text{C}}{{\text{l}}_{2}}\left( {\nu = {0}} \right)$ 方程(3)
    2 ${\text{Cl + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{\text{ClO}}$ 方程(4)
    3 ${\text{O + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{{\text{O}}_{2}}$ 0.09
    4 ${\text{O}}\left( {\text{D}} \right){\text{ + wall }} \to {\text{ }}\dfrac{{1}}{{2}}{{\text{O}}_{2}}$ 0.09
    5 ${\text{C}}{{\text{l}}_{2}}\left( \nu \right){\text{ + wall }} \to {\text{ C}}{{\text{l}}_{2}}\left( {\nu - {1}} \right)$ 1
    6 ${{\text{O}}_{2}}\left( {\text{a}} \right){\text{ + wall }} \to {\text{ }}{{\text{O}}_{2}}$ 0.007
    7 ${\text{O}}\left( {\text{D}} \right){\text{ + wall }} \to {\text{ O}}$ 0.1
    8 ${\text{A}}{{\text{r}}^ * }{\text{ + wall }} \to {\text{ Ar}}$ 1
    DownLoad: CSV

    表 3  偏压频率为13.56 MHz时, 不同偏压幅值下的时间平均鞘层厚度和鞘层电压降

    Table 3.  Time-averaged sheath thickness and voltage drop across the sheath for different bias voltage amplitudes, at bias frequency of 13.56 MHz.

    25 V50 V75 V100 V125 V150 V175 V200 V
    ${\bar d_{\text{s}}}{\text{ /mm}}$4.674.754.794.804.814.854.935.03
    ${\bar V_{\text{s}}}{\text{ /V}}$31.3255.4779.98104.63129.34154.1178.88203.70
    DownLoad: CSV
  • [1]

    Efremov A M, Kim D P, Kim C I 2004 IEEE Trans. Plasma Sci. 32 1344Google Scholar

    [2]

    Efremov A M, Kim D P, Kim C I 2003 J. Vac. Sci. Technol., A 21 1568Google Scholar

    [3]

    Bogaerts A, Neyts E, Gijbels R, Van Der Mullen J 2002 Spectrochim Acta, Part B 57 609Google Scholar

    [4]

    Choi S K, Kim D P, Kim C I, Chang E G 2001 J. Vac. Sci. Technol., A 19 1063Google Scholar

    [5]

    Lee Y J, Han H R, Lee J, Yeom G Y 2000 Surf. Coat. Technol. 131 257Google Scholar

    [6]

    Wen D Q, Liu W, Gao F, Lieberman M A, Wang Y N 2016 Plasma Sources Sci. Technol. 25 045009Google Scholar

    [7]

    Wen D, Zhang Y, Lieberman M A, Wang Y 2017 Plasma Processes Polym. 14 1600100Google Scholar

    [8]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol., A 33 061303Google Scholar

    [9]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 071501Google Scholar

    [10]

    Lee H C, Chung C W 2012 Appl. Phys. Lett. 101 244104Google Scholar

    [11]

    Lee H C, Bang J Y, Chung C W 2011 Thin Solid Films 519 7009Google Scholar

    [12]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol., A 13 368Google Scholar

    [13]

    Gudmundsson J T 2004 J. Phys. D: Appl. Phys. 37 2073Google Scholar

    [14]

    Jung J, Kim M S, Park J, Lim C M, Hwang T W, Seo B J, Chung C W 2023 Phys. Plasmas 30 023504Google Scholar

    [15]

    Tong L, Zhang Y R, Huang J W, Zhao M L, Wen D Q, Song Y H, Wang Y N 2021 Phys. Plasmas 28 053512Google Scholar

    [16]

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2023 J. Phys. D: Appl. Phys. 56 365202

    [17]

    Khater M H, Overzet L J 2004 Plasma Sources Sci. Technol. 13 466Google Scholar

    [18]

    Dai Z L, Zhang S Q, Wang Y N 2013 Vacuum 89 197Google Scholar

    [19]

    Zhang S Q, Dai Z L, Song Y H, Wang Y N 2014 Vacuum 99 180Google Scholar

    [20]

    Levko D, Raja L L 2022 J. Vac. Sci. Technol., B 40 052205Google Scholar

    [21]

    Levko D, Upadhyay R R, Suzuki K, Raja L L 2023 J. Vac. Sci. Technol., A 41 012205Google Scholar

    [22]

    Malyshev M V, Donnelly V M, Colonell J I, Samukawa S 1999 J. Appl. Phys. 86 4813Google Scholar

    [23]

    Malyshev M V, Donnelly V M 2000 Plasma Sources Sci. Technol. 9 353Google Scholar

    [24]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [25]

    Malyshev M V, Donnelly V M 2001 J. Appl. Phys. 90 1130Google Scholar

    [26]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M, Herman I P 2000 J. Appl. Phys. 88 2246Google Scholar

    [27]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 88 6207Google Scholar

    [28]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642Google Scholar

    [29]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 015001Google Scholar

    [30]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201Google Scholar

    [31]

    Thorsteinsson E G, Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115202Google Scholar

    [32]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [33]

    Gudmundsson J T, Hjartarson A T, Thorsteinsson E G 2012 Vacuum 86 808Google Scholar

    [34]

    Zhang Y R, Zhao Z Z, Xue C, Gao F, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 295204

    [35]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [36]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶, 费嘉瑞 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y, Fei J R 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [37]

    Smith S A, Lampert W V, Rajagopal P, Banks A D, Thomson D, Davis R F 2000 J. Vac. Sci. Technol., A 18 879Google Scholar

    [38]

    Lee J M, Chang K M, Lee I H, Park S J 2000 J. Vac. Sci. Technol., B 18 1409Google Scholar

    [39]

    Taube A, Kamiński M, Ekielski M, et al. 2021 Mater. Sci. Semicond. Process. 122 105450Google Scholar

    [40]

    Chung C W, Chung I 2000 J. Vac. Sci. Technol., A 18 835Google Scholar

    [41]

    Park J S, Kim T H, Choi C S, Hahn Y B 2002 Korean J. Chem. Eng. 19 486Google Scholar

    [42]

    Kwon K H, Efremov A, Yun S J, Chun I, Kim K 2014 Thin Solid Films 552 105Google Scholar

    [43]

    Kang S, Efremov A, Yun S J, Son J, Kwon K H 2013 Plasma Chem. Plasma Process. 33 527Google Scholar

    [44]

    Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D: Appl. Phys. 42 095204Google Scholar

    [45]

    Tinck S, Boullart W, Bogaerts A 2011 Plasma Sources Sci. Technol. 20 045012Google Scholar

    [46]

    Tinck S, Bogaerts A, Shamiryan D 2011 Plasma Processes Polym. 8 490Google Scholar

    [47]

    Hsu C C, Coburn J W, Graves D B 2006 J. Vac. Sci. Technol., A 24 1Google Scholar

    [48]

    Efremov A, Amirov I, Izyumov M 2023 Vacuum 207 111664Google Scholar

    [49]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [50]

    Schulze J, Schüngel E, Czarnetzki U 2012 Appl. Phys. Lett. 100 024102Google Scholar

    [51]

    Ahr P, Schüngel E, Schulze J, Tsankov T V, Czarnetzki U 2015 Plasma Sources Sci. Technol. 24 044006Google Scholar

    [52]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc.) p268

    [53]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N A 2021 Acta Phys. Sin. 70 095206Google Scholar

    [54]

    Yang W, Zhao S X, Wen D Q, Liu W, Liu Y X, Li X C, Wang Y N 2016 J. Vac. Sci. Technol., A 34 031305Google Scholar

    [55]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

    [56]

    Proto A 2021 Ph. D. Dissertation (Iceland: University of Iceland

    [57]

    Stafford L, Khare R, Guha J, Donnelly V M, Poirier J S, Margot J 2009 J. Phys. D: Appl. Phys. 42 055206Google Scholar

    [58]

    Guha J, Donnelly V M 2009 J. Appl. Phys. 105 113307Google Scholar

    [59]

    Boyd R L F, Thomson J B 1959 Proc. R. Soc. London, Ser. A 252 102Google Scholar

    [60]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [61]

    Dai Z L, Wang Y N, Ma T C 2002 Phys. Rev. E 65 036403Google Scholar

    [62]

    Dai Z L, Wang Y N 2004 Phys. Rev. E 69 036403Google Scholar

    [63]

    Dai Z L, Wang Y N 2002 Phys. Rev. E 66 026413Google Scholar

    [64]

    Dai Z L, Wang Y N 2002 J. Appl. Phys. 92 6428Google Scholar

    [65]

    Dai Z L, Wang Y N 2003 Surf. Coat. Technol. 165 224Google Scholar

    [66]

    Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A, Wang Y N 2014 J. Appl. Phys. 115 233303Google Scholar

    [67]

    Hong Y H, Kim T W, Kim B S, Lee M Y, Chung C W 2022 Plasma Sources Sci. Technol. 31 075008Google Scholar

    [68]

    Huang S, Gudmundsson J T 2013 Plasma Sources Sci. Technol. 22 055020Google Scholar

    [69]

    Hennad A, Yousfi M 2010 J. Phys. D: Appl. Phys. 44 025201Google Scholar

    [70]

    Manenschijn A, Janssen G C A M, Van Der Drift E, Radelaar S 1991 J. Appl. Phys. 69 1253Google Scholar

    [71]

    Hayden C, Gahan D, Hopkins M B 2009 Plasma Sources Sci. Technol. 18 025018Google Scholar

    [72]

    Gahan D, Dolinaj B, Hopkins M B 2008 Rev. Sci. Instrum. 79 033502Google Scholar

    [73]

    Edelberg E A, Aydil E S 1999 J. Appl. Phys. 86 4799Google Scholar

    [74]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 J. Vac. Sci. Technol., A 17 506Google Scholar

    [75]

    Edelberg E A, Perry A, Benjamin N, Aydil E S 1999 Rev. Sci. Instrum. 70 2689Google Scholar

  • [1] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [4] Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes. Acta Physica Sinica, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [5] Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field. Acta Physica Sinica, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] Zhang Yu-Ru, Gao Fei, Wang You-Nian. Numerical investigation of low pressure inductively coupled plasma sources: A review. Acta Physica Sinica, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [7] Zhang Gai-Ling, Hua Yue, Hao Ze-Yu, Ren Chun-Sheng. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma. Acta Physica Sinica, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [8] Yang Cheng, Zhou Xin. Multiple types of local structure in liquid water. Acta Physica Sinica, 2016, 65(17): 176501. doi: 10.7498/aps.65.176501
    [9] Li Liu-He, Liu Hong-Tao, Luo Ji, Xu Yi. Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it. Acta Physica Sinica, 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [10] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [11] Wu Fei-Fei, Liao Rui-Jin, Yang Li-Jun, Liu Xing-Hua, Wang Ke, Zhou Zhi. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge. Acta Physica Sinica, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [12] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [13] Wang Jing, Ma Rui-Ling, Wang Long, Meng Jun-Min. Numerical simulation of the spread of internal waves see from deep sea to shallow sea from the mixed model. Acta Physica Sinica, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [14] Sun Kai, Xin Yu, Huang Xiao-Jiang, Yuan Qiang-Hua, Ning Zhao-Yuan. Characteristics of electron energy distribution function of capacitively coupled plasma excited by 60MHz RF source. Acta Physica Sinica, 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [15] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [16] Di Xiao-Lian, Xin Yu, Ning Zhao-Yuan. Effect of antenna configuration on power transfer efficiency for planar inductively coupled plasmas. Acta Physica Sinica, 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] Xin Yu, Di Xiao-Lian, Yu Yi-Qing, Ning Zhao-Yuan. Generation of multi-source inductively coupled plasma and its diagnostics. Acta Physica Sinica, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [18] Liu Yan-Hong, Zhang Jia-Liang, Wang Wei-Guo, Li Jian, Liu Dong-Ping, Ma Teng-Cai. Deposition of diamond-like carbon and analysis of ion energy in CH4 or CH4+Ar dielectric barrier discharge plasma. Acta Physica Sinica, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [19] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] Wang De-Zhen, Ma Teng-Cai, Gong Ye. . Acta Physica Sinica, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
Metrics
  • Abstract views:  2843
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2023
  • Accepted Date:  22 November 2023
  • Available Online:  29 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回