-
Metasurfaces can realize flexible modulation of electromagnetic waves at the wavelength level. However, the reported functions of metasurface are usually fixed and cannot be changed, once its structural design is completed. The designed metasurface cannot meet the requirements for flexible regulation of terahertz waves. We find that the phase change material of vanadium dioxide can achieve a transition from insulating state to metallic state through thermal, electrical, or light excitation, and the phase transition of this material is reversible. Therefore, using vanadium dioxide to form a composite metasurface can achieve dynamic modulation of terahertz waves. In this study, we propose a terahertz metasurface with switchable broadband absorption and polarization conversion. The proposed metasurface is composed of a 9-layer structure stacked from bottom to top with a combination pattern of different dielectric layers. By adjusting the conductivity of vanadium dioxide, the designed metasurface can achieve flexible switching between terahertz wave absorption function and polarization conversion function. When the vanadium dioxide is in the metal state, the designed metasurface behaves as a broadband absorber with an absorption rate of more than 90% in a range of 6.32–18.06 THz and a relative bandwidth of 96.3%. When the vanadium dioxide is in the insulated state, the designed structure acts as a polarization converter in a frequency range of 2.41–3.42 THz, 4.78–7.48 THz, and 9.53–9.73 THz, respectively, with a polarization conversion rate of over 90%. We believe that this metasurface structure will have good applications in the fields of terahertz wave detection, terahertz switches, terahertz filtering, terahertz communication, and terahertz sensing.
-
Keywords:
- terahertz /
- metasurface /
- broadband absorption /
- polarization conversion
[1] Chen Z, Chen J J, Tang HW, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar
[2] Wu C Y, Fang Y Q, Luo L B, Guo K, Guo Z Y 2020 Mod. Phys. Lett. B 34 2050292Google Scholar
[3] Barkabian M, Sharifi N, Granpayeh N 2021 Opt. Express 29 20160Google Scholar
[4] Wu X L, Zheng Y, Luo Y, Zhang J G, Yi Z, Wu X W, Cheng S B, Yang W X, Yu Y, Wu P H 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar
[5] He X Y, Liu F, Lin F T, Shi W Z 2021 J. Phys. D: Appl. Phys. 54 235103Google Scholar
[6] Yi N N, Zong R, Qian R R 2022 Mater. Sci. Semicond. Process. 146 106682.Google Scholar
[7] Wang J Y, Yang R C, Li Z H, Tian J P 2022 Opt. Mater. 124 111953Google Scholar
[8] Xu J, Tang J, Cheng Y, Chen M, Wang H X, Xiong J F, Wang T R, Wang S Z, Zhang Y D, Wen H, Qu S L, Yuan L B 2022 Opt. Express 30 17008Google Scholar
[9] Gao J J, Zhao L, Zhang Z Y, Liu S H, Li R M, Mu K J, Zhang B, Wang J Q 2024 Phys. Scr. 99 065565Google Scholar
[10] Liu W W, Xu J S, Song Z Y 2021 Opt. Express 29 23331Google Scholar
[11] Niu J H, Hui Q, Mo W, Tian R F, Zhu A J 2024 Phys. Scr. 99 075916Google Scholar
[12] Zhao Y J, Yang R C, Wang Y X, Zhang W M, Tian J P 2022 Opt. Express 30 27407Google Scholar
[13] Li C Q, Song Z Y 2023 Opt. Laser Technol. 157 108764Google Scholar
[14] Liu L, Huang R, Ouyang Z B 2021 Opt. Express 29 20839Google Scholar
[15] Jiang Y Y, Zhang M, Wang W H, Song Z Y 2022 Phys. Scr. 97 015501Google Scholar
[16] Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar
[17] Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar
[18] Lian X J, Ma M T, Tian J P, Yang R C, Wu X T 2023 AEU-Int. J. Electron. C 170 154784
[19] Zhu W, Rukhlenk I D, Premaratn M 2013 Appl. Phys. Lett. 102 241914Google Scholar
[20] Kang L, Wu Y H, Werner D H 2021 Opt. Express 29 8816Google Scholar
[21] Ma W Y, Yu S L, Zhao T G 2021 Opt. Commun. 493 127037Google Scholar
[22] Yu F Y, Zhu J B, Shen X B 2022 Opt. Mater. 123 111745Google Scholar
[23] Kharintsev S S, Battalova E I, Mukhametzyanov T A, Pushkarev A P, Scheblykin I G, Makarov S V, Potma E O, Fishman D A 2023 ACS Nano 17 9235Google Scholar
[24] Lian M, Su Y, Liu K, Zhang S J, Chen X Y, Ren H A, Xu Y H, Chen J J, Tian Z, Cao T 2023 Adv. Opt. Mater. 11 2202439Google Scholar
[25] Zhang P S, Deng X H, Tao L Y, Li P, Lu M, Guo F M, Song Y M, Yuan J R 2023 Opt. Mater. 138 113716Google Scholar
[26] Feng Z J, Ni B, Ni H B, Zhou X Y, Yang L S, Chang J H 2023 J. Opt. Soc. Am. B 40 2174Google Scholar
[27] Miao X, Xiao Z Y, Cui Z T, Zheng T T, Wang X Y 2023 Optik 281 170810Google Scholar
[28] Dong T L, Zhang Y, Li Y, Tang Y P, He, X J 2023 Results Phys. 45 106246Google Scholar
-
图 1 超宽带太赫兹吸收器与偏振转换器结构示意图 (a) 周期和单元结构; (b) VO2-QR层俯视图; (c) VO2-R层俯视图; (d) 135°不对称十字形金带层俯视图; (e) 45°不对称十字形金带层俯视图
Figure 1. The schematic of the ultrabroadband terahertz absorber and polarization converter: (a) Unit cell; (b) top view of the VO2-QR layer; (c) top view of the VO2-R layer; (d) top view of the 135° asymmetrical cross-shaped gold strip; (e) top view of the 45° asymmetrical cross-shaped gold strip.
图 4 (a) 垂直入射下, 宽带吸收器在不同偏振角下的吸收光谱; (b) TE模式下吸收器在不同入射角下的吸收光谱; (c) TM模式下吸收器在不同入射角下的吸收光谱
Figure 4. (a) Absorption spectra of ultra-broadband absorber at various polarization angles under normal incidence; (b) absorption spectra of absorber at various incidence angles in TE mode; (c) absorption spectra of absorber at various incidence angles in TM mode
表 1 本文工作与先前报道成果对比
Table 1. Comparison of the work with previously reported results.
文献 可调材料 功能 性能 带宽 [25] 二氧化钒 宽带吸收 5.8—17.2 THz: A ≥ 90% 吸收11.4 THz [26] 二氧化钒 极化转换 1.08—3.22 THz: PCR ≥ 90% 极化转换2.14 THz [27] 二氧化钒 窄带吸收、极化转换 1.6 THz: A ≈ 100%;
0.67—1.99 THz: PCR ≥ 90%单频点吸收
极化转换1.32 THz[28] 二氧化钒 宽带吸收、极化转换 0.78—1.81 THz: A ≥ 90%;
0.51—1.45 THz: PCR ≥ 90%吸收1.03 THz
极化转换0.94 THz本文 二氧化钒 宽带吸收、极化转换 6.32—18.06 THz: A ≥ 90%;
2.41—3.42 THz, 4.78—7.48 THz
和9.53—9.73 THz: PCR ≥ 90%吸收11.74 THz
极化转换3.91 THz -
[1] Chen Z, Chen J J, Tang HW, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar
[2] Wu C Y, Fang Y Q, Luo L B, Guo K, Guo Z Y 2020 Mod. Phys. Lett. B 34 2050292Google Scholar
[3] Barkabian M, Sharifi N, Granpayeh N 2021 Opt. Express 29 20160Google Scholar
[4] Wu X L, Zheng Y, Luo Y, Zhang J G, Yi Z, Wu X W, Cheng S B, Yang W X, Yu Y, Wu P H 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar
[5] He X Y, Liu F, Lin F T, Shi W Z 2021 J. Phys. D: Appl. Phys. 54 235103Google Scholar
[6] Yi N N, Zong R, Qian R R 2022 Mater. Sci. Semicond. Process. 146 106682.Google Scholar
[7] Wang J Y, Yang R C, Li Z H, Tian J P 2022 Opt. Mater. 124 111953Google Scholar
[8] Xu J, Tang J, Cheng Y, Chen M, Wang H X, Xiong J F, Wang T R, Wang S Z, Zhang Y D, Wen H, Qu S L, Yuan L B 2022 Opt. Express 30 17008Google Scholar
[9] Gao J J, Zhao L, Zhang Z Y, Liu S H, Li R M, Mu K J, Zhang B, Wang J Q 2024 Phys. Scr. 99 065565Google Scholar
[10] Liu W W, Xu J S, Song Z Y 2021 Opt. Express 29 23331Google Scholar
[11] Niu J H, Hui Q, Mo W, Tian R F, Zhu A J 2024 Phys. Scr. 99 075916Google Scholar
[12] Zhao Y J, Yang R C, Wang Y X, Zhang W M, Tian J P 2022 Opt. Express 30 27407Google Scholar
[13] Li C Q, Song Z Y 2023 Opt. Laser Technol. 157 108764Google Scholar
[14] Liu L, Huang R, Ouyang Z B 2021 Opt. Express 29 20839Google Scholar
[15] Jiang Y Y, Zhang M, Wang W H, Song Z Y 2022 Phys. Scr. 97 015501Google Scholar
[16] Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar
[17] Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar
[18] Lian X J, Ma M T, Tian J P, Yang R C, Wu X T 2023 AEU-Int. J. Electron. C 170 154784
[19] Zhu W, Rukhlenk I D, Premaratn M 2013 Appl. Phys. Lett. 102 241914Google Scholar
[20] Kang L, Wu Y H, Werner D H 2021 Opt. Express 29 8816Google Scholar
[21] Ma W Y, Yu S L, Zhao T G 2021 Opt. Commun. 493 127037Google Scholar
[22] Yu F Y, Zhu J B, Shen X B 2022 Opt. Mater. 123 111745Google Scholar
[23] Kharintsev S S, Battalova E I, Mukhametzyanov T A, Pushkarev A P, Scheblykin I G, Makarov S V, Potma E O, Fishman D A 2023 ACS Nano 17 9235Google Scholar
[24] Lian M, Su Y, Liu K, Zhang S J, Chen X Y, Ren H A, Xu Y H, Chen J J, Tian Z, Cao T 2023 Adv. Opt. Mater. 11 2202439Google Scholar
[25] Zhang P S, Deng X H, Tao L Y, Li P, Lu M, Guo F M, Song Y M, Yuan J R 2023 Opt. Mater. 138 113716Google Scholar
[26] Feng Z J, Ni B, Ni H B, Zhou X Y, Yang L S, Chang J H 2023 J. Opt. Soc. Am. B 40 2174Google Scholar
[27] Miao X, Xiao Z Y, Cui Z T, Zheng T T, Wang X Y 2023 Optik 281 170810Google Scholar
[28] Dong T L, Zhang Y, Li Y, Tang Y P, He, X J 2023 Results Phys. 45 106246Google Scholar
Catalog
Metrics
- Abstract views: 1796
- PDF Downloads: 57
- Cited By: 0