-
Normal (n-i-p) perovskite solar cells (PSCs) have received increasing attention due to their advantages such as high conversion efficiency and good stability. Tin dioxide is an ideal electron transport layer material for normal perovskite solar cells. Among various available electron transport layers, tin dioxide stands out because of its excellent stability, low density of defect states, and appropriate energy levels. The interface defects between tin dioxide and perovskite are the key factors restricting the improvement of the conversion efficiency in perovskite solar cells. Therefore, a method of fabricating normal perovskite solar cells based on the buried interface modification strategy is proposed in this work. By doping methylammonium bromide into tin dioxide to form a buried interface, the interface defects between tin dioxide and perovskite are reduced, the electron mobility of tin dioxide is enhanced, and the growth of high-quality perovskite materials is promoted. The conversion efficiency of the normal perovskite solar cells reaches 23.12%, providing an effective strategy for fabricating high-efficiency normal perovskite solar cells.
-
Keywords:
- normal /
- perovskite solar cells /
- buried interface /
- MABr
[1] Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar
[2] Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar
[3] Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar
[4] Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar
[5] You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar
[6] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar
[7] Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar
[8] Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar
[9] Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar
[10] Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar
[11] Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar
[12] Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar
[13] Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar
[14] Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar
[15] Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar
[16] Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar
[17] Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar
[18] Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar
[19] Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar
[20] Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar
[21] Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar
[22] Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar
[23] Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar
[24] Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar
[25] Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar
[26] Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar
[27] Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar
[28] Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar
-
图 1 SnO2的XPS光谱 (a)未修饰样品(红线)和埋底界面修饰样品(蓝线)的Sn 3d; (b)未修饰样品(红线)和埋底界面修饰样品(蓝线)的O 1s; (c)未修饰样品Sn 3d的拟合光谱; (d)未修饰样品O 1s的拟合光谱; (e) 埋底界面修饰样品Sn 3d的拟合光谱; (f) 埋底界面修饰样品O 1s的拟合光谱
Figure 1. XPS spectra of SnO2: (a) Sn 3d for unmodified samples (red line) and buried interface modified samples (blue line); (b) O 1s for unmodified samples (red line) and buried interface modified samples (blue line); (c) fitting spectra of Sn 3d for unmodified samples; (d) fitting spectra of O 1s for unmodified samples; (e) fitting spectra of Sn 3d for buried interface modified samples; (f) fitting spectra of O 1s for buried interface modified samples.
图 3 SnO2薄膜的SEM图 (a)未修饰样品, (b)埋底界面修饰样品; SnO2薄膜的AFM图 (c)未修饰样品, (d)埋底界面修饰样品; SnO2薄膜的水接触角图 (e)未修饰样品, (f)埋底界面修饰样品
Figure 3. SEM images of SnO2 films for (a) unmodified samples, (b) buried interface modified samples; AFM images of SnO2 films for (c) unmodified samples, (d) buried interface modified samples; water contact angle images of SnO2 films for (e) unmodified samples, (f) buried interface modified samples.
图 5 钙钛矿薄膜的AFM图, 其中(a)未修饰样品, (b)埋底界面修饰样品; 钙钛矿薄膜的水接触角图, 其中(c)未修饰样品, (d)埋底界面修饰样品
Figure 5. AFM images of perovskite films for (a) unmodified samples, (b) buried interface modified samples; water contact angle images of perovskite thin films for (c) unmodified samples, (d) buried interface modified samples.
图 9 钙钛矿电池 (a) 正向和反向扫描的J-V曲线; (b) PCE箱线图; (c) VOC箱线图; (d) JSC箱线图; (e) FF箱线图; (f) VOC随光强变化曲线图; (g) EQE曲线图; (h) 莫特-肖特基曲线
Figure 9. Perovskite solar cells: (a) J-V curves for forward and reverse scans; (b) box plot of PCE; (c) box plot of VOC; (d) box plot of JSC; (e) box plot of FF; (f) curves of VOC varying with light intensity; (g) EQE curves; (h) Mott-Schottky curves.
表 1 未修饰样品钙钛矿薄膜; 埋底界面修饰样品的钙钛矿薄膜的TRPL光谱拟合参数
Table 1. TRPL spectral fitting parameters for unmodified perovskite film samples and buried interface modified perovskite film samples.
$ \tau $1/ns A1 $ \tau $2/ns A2 Taverage/ns Glass/FTO/SnO2/PVK 20.83 430.0 229.93 1.31 27.63 Glass/FTO/SnO2+MABr/PVK 16.62 3165.42 243.48 1.24 17.91 表 2 钙钛矿太阳能电池参数
Table 2. Parameters of Perovskite Solar Cells.
Devices VOC/V Jsc/(mA·cm–2) FF/% PCE/% glass/FTO/SnO2/PVK/Spiro-OMeTAD/Au Forward 1.09 25.67 63.88 17.70 Reverse 1.11 25.96 75.08 21.57 glass/FTO/SnO2+MABr/PVK/Spiro-OMeTAD/Au Forward 1.12 25.84 77.78 22.56 Reverse 1.12 25.80 79.90 23.12 -
[1] Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar
[2] Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar
[3] Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar
[4] Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar
[5] You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar
[6] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar
[7] Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar
[8] Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar
[9] Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar
[10] Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar
[11] Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar
[12] Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar
[13] Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar
[14] Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar
[15] Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar
[16] Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar
[17] Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar
[18] Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar
[19] Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar
[20] Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar
[21] Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar
[22] Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar
[23] Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar
[24] Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar
[25] Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar
[26] Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar
[27] Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar
[28] Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar
Catalog
Metrics
- Abstract views: 395
- PDF Downloads: 17
- Cited By: 0