搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年  69卷  第15期

特邀综述
齿鲸生物声呐发射特性与波束调控研究
宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉
2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
摘要:
齿鲸生物经过长期自然选择, 进化出小巧、灵敏、高效的声呐系统. 齿鲸生物声呐研究涉及海洋物理、声学、生物学、仿生学和信息学等学科, 对于生物仿生、水声声呐、信号处理、水下探测与通信等领域具有参考价值. 本文从声呐系统解剖结构、声呐信号与声呐波束调控三方面出发介绍齿鲸声呐发射系统. 首先, 介绍如何利用计算机断层扫描成像与超声测量技术重建齿鲸声呐发射系统的高精度三维结构, 获取其声速、密度分布, 为声呐系统的功能研究建立基础. 随后, 探究声呐系统发出的声信号的特性, 研究声信号与生物行为之间的联系. 最后, 参考齿鲸生物声呐解剖结构与声呐信号特性建立数值模型研究声发射系统的气质结构、软组织结构和骨质结构组成的声学多相介质对声波传播的控制作用. 齿鲸生物能利用其声呐信号的多样性与声呐发射系统结构的复杂特性动态调整声波传播与波束形成. 探究齿鲸生物声呐工作原理能加深对生物多相介质中的声传播过程的理解, 有望为水下仿生声探测与感知技术的发展提供新思路.
专题: 光学超构材料
光学超构材料专题编者按
2020, 69(15): 150101. doi: 10.7498/aps.69.150101
摘要:
周期与非周期传输线网络的物理与拓扑性质
姜天舒, 肖孟, 张昭庆, 陈子亭
2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
摘要:
传输线电缆是一种生活中很常见的一维波导, 除了在工程上有广泛应用外, 也可以被应用于基础研究领域的一些理论验证性实验中. 例如, 因为传输线和量子电路具有相同的波动方程形式, 传输线被广泛应用于量子图的研究中. 另一方面, 传输线网络方程还和零能紧束缚模型的方程形式相似, 所以可以用传输线网络来验证基于紧束缚模型理论所预言的物理性质, 例如安德森局域化、能带结构、拓扑性质等. 本文从传输线网络方程出发, 回顾传输线在上面提到的几个研究方向中的具体应用. 这些研究方向分别为: 一维、二维、三维网络中的安德森局域化研究; 周期性以及准周期性网络中的能带结构; 传输线网络中角动量依赖的拓扑传输的验证. 本文详细阐述了这些工作的研究思路以及结果, 展现了传输线在基础研究领域的广泛应用潜力.
基于超构材料的Cherenkov辐射
林月钗, 刘仿, 黄翊东
2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
摘要:
Cherenkov辐射(Cherenkov radiation, CR)是自由电子速度超过介质中光速时产生的电磁辐射, 其在粒子探测、生物医学、电磁辐射源等领域具有重要的应用价值. 近年来, 人们发现由不同材料和结构组成的超构材料具有新奇的力学、声学和光学特性. 电磁波在超构材料中的传播、耦合和辐射可以具有与传统材料完全不同的奇特性质. 将传统真空电子学与微纳光电子学结合, 探索自由电子与超构材料的相互作用, 成为近期不少研究者关注的热点之一. 超构材料的引入打破了传统材料和结构中电磁学规律的限制, 自由电子在其中产生的辐射以及与辐射的相互作用表现出许多新现象和新效应. 本文首先回顾了CR的基本概念和辐射原理, 在此基础上介绍了自由电子与双曲超材料、负折射率材料、高Q值超材料以及超表面相互作用产生辐射的相关工作, 重点阐述在这些不同功能的超构材料中产生CR的机理及其特性, 涉及的工作包括无阈值CR、反向CR、受激CR以及辐射偏振和相位的调控. 自由电子与各种新型超构材料相互作用的研究和发展, 为实现新型高效的集成化自由电子器件提供了新的途径.
新型电磁波隐身研究进展
陈天航, 郑斌, 钱超, 陈红胜
2020, 69(15): 154104. doi: 10.7498/aps.69.20200976
摘要:
随着科技的发展, 隐身逐步从一种简单、朴素的视觉欺骗手段, 走向一种精准化、系统化的现代技术体系. 通过设计合理的电磁参数, 新型电磁波隐身技术能够灵活地调控电磁波的传播与散射, 从而降低被隐身物体的可探测性. 新型隐身器件的电磁参数可以通过人工设计微纳结构的方法来实现, 也可以结合自然界中已存在的介质来制备. 本文在详细介绍新型电磁波隐身研究进展的基础上, 探讨了这一领域所面临的难点和挑战, 并对未来的发展做了展望.
基于相变材料超表面的光学调控
严巍, 王纪永, 曲俞睿, 李强, 仇旻
2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
摘要:
超表面光学完美结合了传统的几何、物理光学理论和前沿的纳米技术, 近年来引起科研工作者的广泛关注. 在线性光学领域, 它已广泛用于对光波的振幅、相位进行调控, 如平面透镜、全息成像和热辐射器件等. 在非线性光学领域, 针对它在高次谐波生成、超快激光器等方面的研究工作也方兴未艾. 本文分别从理论和应用角度, 分析总结了国内外超表面光学调控方向的研究进展, 重点介绍了利用相变材料实现动态光学调控的前沿研究工作, 并讨论了未来发展前景以及需要解决的难题.
含双曲超构材料的复合周期结构的带隙调控及应用
吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强
2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
摘要:
等频面的拓扑结构强烈影响光在材料中的行为. 通常组成光子晶体原胞的材料都是介电材料, 其等频面都具有相同的封闭拓扑结构. 结构最为简单的光子晶体是由两种介电材料交替组成的一维光子晶体. 然而, 这种传统的光子晶体在横磁和横电偏振下的光子带隙将随着入射角的增大而向短波方向移动, 既不利于全向带隙的产生与展宽, 又使得基于光子带隙的一些应用限制在很窄的入射角度范围内. 本综述利用双曲超构材料对电磁波相位的独特调控作用, 在由具有开放的等频面的双曲超构材料和具有封闭的等频面的普通介电材料交替组成的复合周期结构中实现了随入射角零移以及红移的特殊带隙, 为研制具有新型功能的光学器件提供了新机理. 基于零移带隙, 可设计具有固定带宽的全向反射器和宽角度的近完美光吸收器. 基于红移带隙, 可设计宽角度的偏振选择器和超灵敏折射率传感器.
互易波导模式耦合理论
陈云天, 王经纬, 陈伟锦, 徐竞
2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
摘要:
波导中模式耦合是一种普遍的现象. 在光纤通信中不同导模之间的耦合会引起串扰, 导模和辐射模的耦合会降低导模的功率. 另一方面, 利用模式耦合现象能设计出具有特定功能的耦合器和分束器等光学器件. 模式耦合在光纤通信和光纤传感中也具有广泛应用. 因此, 分析研究波导模式如何耦合具有重要的应用价值. 模式耦合理论是研究波导中模式耦合的常用方法, 不仅提供了一种直观的物理图景来描述光学模式如何杂化, 而且还对相关模式如何杂化给出定量评估. 近年来, 以宇称时间对称性结构为代表的非厄米波导成为研究热点, 但传统模式耦合理论在这种情况下不再适用. 本文简述了模式耦合理论的发展历史, 详细介绍了构造互易波导模式耦合理论的关键概念和方法, 进一步回顾了在波导模式耦合理论方面的一系列代表性工作, 尤其是手征对称模式耦合理论以及广义模式耦合理论, 总结了这些模式耦合理论和传统模式耦合理论之间的联系, 最后简单介绍了它们在宇称时间对称波导及各向异性波导中的应用.
平带光子微结构中的新颖现象:从模式局域到实空间拓扑
夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚
2020, 69(15): 154207. doi: 10.7498/aps.69.20200384
摘要:
近年来, 凝聚态物理中平带局域与拓扑等概念与光学体系的有机结合, 使得平带光子学系统的研究迎来了极为快速的发展, 催生了一系列新颖的光物理现象与潜在的应用前景. 目前, 平带结构在光子晶体、光学超构材料以及光子晶格(倏逝波耦合的光学波导阵列)等多种人工光子微结构中得到了实现, 并在其中观察到了很多凝聚态系统中难以直接实现的物理现象. 本文简要综述光子微结构中关于平带物理的最新研究进展. 以光诱导和激光直写光子晶格系统为例, 包括Lieb, Kagome 和超级蜂窝晶格等, 特别介绍平带模式局域与实空间拓扑效应等新颖物理现象. 光子微结构为研究平带物理和拓扑效应提供了一个可调控的平台, 同时其研究结果也对探究电子、声子、等离激元、腔极化子与超冷原子等系统中相关的基本物理问题和应用具有借鉴作用.
等离激元能带结构与应用
刘亮, 韩德专, 石磊
2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
摘要:
近些年来, 表面等离激元因其具有强局域、亚波长和高场强等特殊的光学性质而备受关注, 在化学、生物、通信、纳米能源等各领域得到了广泛的研究. 为了更好地控制表面等离激元的激发、传播和辐射, 具有能带结构的周期性表面等离激元结构被广泛的研究. 本文全面综述了具有等离激元能带的微纳结构、能带的产生机制与其特殊的性质, 包括连续谱中的束缚态、波导、全带隙、拓扑等. 在此基础上, 基于等离激元能带设计所开展的一些应用也予以系统总结. 最后, 随着新材料的发现, 本文还简要介绍了二维材料石墨烯等离激元能带和它的一些应用.
光学超构材料芯片上类比引力的研究进展
盛冲, 刘辉, 祝世宁
2020, 69(15): 157802. doi: 10.7498/aps.69.20200183
摘要:
光学超构材料是一种人工设计的微结构材料, 它的出现打破了传统材料设计思维的局域性, 为在微纳尺度上人为调控电磁波提供了新的范式, 实现了具有超越自然界常规材料的光学性质. 尤其是超构材料具有将光和电磁辐射耦合到亚波长尺度的能力, 满足了高速发展的现代科学技术对光学元器件的高性能、微型化以及集成化的新要求. 因此, 基于超构材料的光子芯片带来很多令人鼓舞的应用, 如突破衍射极限的完美成像、多功能的集成光学器件等. 更有意思的是, 超构材料光子芯片还可以用来模拟一些广义相对论的现象, 尤其是探索一些尚未被实验证实的与引力相关的现象. 本文从不同类型的超构材料芯片出发, 简要介绍了在光学超构材料芯片上开展的类比引力的研究, 最后对其发展现状、优势与面临的挑战进行了相应的总结与展望.
空域模拟光学计算器件的研究进展
周毅, 陈瑞, 陈雯洁, 马云贵
2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
摘要:
空域模拟光学计算器件具备高通量、实时性和低能耗的信息处理能力. 光学超构材料结构紧凑、对光波具有强大调控能力, 可被用于构建小型化、集成化的空域模拟光学计算器件. 目前空域模拟光学计算器件的研究根据设计方法主要分为4F系统法和格林函数法两类. 4F系统法需要两个傅里叶变换透镜和一个空间频率滤波器, 实际模拟计算过程是在空域完成的, 结构较为庞大复杂. 格林函数法直接利用特别设计的光学材料的非局域响应在空间频率域实现模拟计算过程, 不需要额外的傅里叶变换组件, 结构简单. 本文按照这两种设计方法介绍了近几年来空域模拟光学计算器件的研究进展, 根据计算功能又分为微分器、积分器、方程求解器和空间频率滤波器, 阐述了这些器件的设计方法. 其后介绍了新近提出的利用自旋轨道耦合作用实现空域模拟一阶微分的计算器件. 最后对空域模拟光学计算器件应用场景和研究前景进行了讨论和分析.
表面等离极化激元的散射及波前调控
管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊
2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
摘要:
表面等离极化激元在片上信号传输、增强非线性/拉曼效应、生物/化学传感、超分辨成像等方面具有重要应用. 在这些应用中, 表面等离极化激元的近场传输及远场散射起着重要作用. 然而, 长期以来人们对相关物理效应缺乏简单有效的理论理解, 这也限制了人们对表面等离极化激元的自由调控. 本文首先简单回顾了表面等离极化激元的发展历史及现状, 接着着重介绍了表面等离极化激元的近场传输效应和远场散射效应, 包括其理论进展及其相关应用; 最后还介绍了表面等离极化激元的近场波前调控的相关方法. 基于这些进展, 人们对表面等离极化激元的散射特性有了更为深刻的理解和更加强大的调控能力, 这将对未来表面等离极化激元相关研究和应用带来启发.
信息超材料研究进展
崔铁军, 吴浩天, 刘硕
2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
摘要:
超材料是物理和信息领域的研究热点之一, 本文主要介绍信息超材料的研究进展. 不同于传统超材料的等效媒质参数表征, 信息超材料由物理单元的数字编码来描述, 通过控制不同的编码序列来实时地调控电磁波, 进而实现超材料的现场可编程功能. 由于在超材料的物理空间上构筑起数字空间, 因此可在超材料的物理平台上直接处理数字信息, 实现了信息系统微波射频和数字信息处理的统一. 本文系统介绍数字编码超材料、现场可编程超材料及信息超材料的基本概念及其调控电磁波的能力. 结合其数字表征的特点, 重点介绍定量描述信息超材料信息量的信息熵、对波束进行搬移的卷积定理、以及对多个波束进行独立调控的加法定理. 最后, 展示了基于信息超材料的可编程全息成像、新架构微波成像和无线通信系统, 实现了超材料的系统级应用.
介质掺杂近零媒质中光场增强效应及其应用
赵林, 冯一军
2020, 69(15): 154101. doi: 10.7498/aps.69.20200147
摘要:
电磁场的汇聚与增强是电磁学中一个重要的研究内容, 具备场汇聚与增强特性的电磁(光学)器件在高方向性电磁天线、激光点火、光学调控等方面有着广泛的应用前景. 目前, 电磁场增强的途径主要有两种, 一是采用构造人工电磁材料结构以实现辐射方向的控制和能量集中, 其次是采用具有高介电常数或高磁导率的材料来实现电磁场增强, 但是上述两种方式应用在光学波段具有一些局限性. 本文基于光子晶体掺杂理论, 通过介质掺杂近零媒质的方式成功实现了光场增强功能. 理论分析和数值仿真计算表明所设计的结构能够显著实现场强增强, 并适用于微波至光波波段, 应用频谱范围很宽. 作为应用探索, 本文还设计了一款工作在270 nm波长的紫外光波段点火装置. 上述工作为新型电磁(光学)器件的研制提供了新的思路.
偏置磁场方向对磁性光子晶体能带结构的影响及其在构建拓扑边界态中的作用
郗翔, 叶康平, 伍瑞新
2020, 69(15): 154102. doi: 10.7498/aps.69.20200198
摘要:
光子晶体中的拓扑相变源自于其能带结构中带隙的打开-闭合-再打开, 其中伴随着能带结构中带序(或本征态)之间的交换. 本文探讨了偏置磁场方向对磁性光子晶体能带结构的影响, 它在构建拓扑边界态中的作用以及对边界态特性的影响. 结果表明: 反转偏置磁场方向会导致能量不同但宇称相同的本征态之间的交换, 这种交换为构造不同特性的拓扑边界态(如多重边界态等)提供了更多选择性. 根据边界两侧光子晶体能带结构的相对关系, 可以预测在边界上是否出现拓扑边界态以及边界态的主要特性.
完美吸收体、电磁“黑洞”以及内置完美匹配层的吸收特性
陶思岑, 陈焕阳
2020, 69(15): 154201. doi: 10.7498/aps.69.20200110
摘要:
完美匹配层在电磁学仿真中具有关键作用, 它可以用有限空间模拟无限空间, 使得电磁波传播至边界和传播至无限远处无异. 内置完美匹配层具有类似的概念, 一般以柱体或者球体的形式置于物理场内部, 能够匹配边界上的电磁场, 使得电磁波传播在其凸面上如同传播至无限远处一样, 没有任何散射. 平面的吸收体除了完美匹配层, 还可以通过多种方式实现, 如Kramers-Kronig关系、光子晶体、超构材料等. 而内置曲面的吸收体常用到的有传统的完美吸收体、电磁“黑洞”等. 变换光学一直以来不断激发着研究者浓厚的研究兴趣, 因其能够通过坐标变换任意操控电磁波走向, 且具有非常广泛的应用, 也时常被用作设计吸收体的理论工具. 而就本文作者所知, 目前还没有非常有效的方式能够实现内置曲面吸收体的完美吸收、无反射, 且不依赖于入射角度和频率. 本文运用变换光学理论设计了一个内置完美匹配层, 该匹配层的材料参数由一个复平面的径向坐标变换得到. 通过平面波的电场图及二维远场图直观地一一对比分析匹配或不匹配的完美吸收体、电磁“黑洞”和该内置完美匹配层的吸收特性, 发现匹配的完美吸收体吸收效果较好, 电磁“黑洞”具有较大散射, 而内置完美匹配层具有相对最好的吸收效果, 且无后向散射, 可作为吸收内核用于电磁仿真以及相关实验中.
赝局域有效介质理论
宋彤彤, 罗杰, 赖耘
2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
摘要:
有效介质理论在利用人工微结构材料拓展光学参数方面具有重要意义. 本文对电介质光子晶体等具有非局域性质的人工微结构材料发展了一种新的赝局域有效介质理论, 通过局域的有效介电常数\begin{document}${\overleftrightarrow \varepsilon ^{\rm{p}}}\left( \omega \right)$\end{document}、局域的有效磁导率\begin{document}${\overleftrightarrow \mu ^{\rm{p}}}(\omega)$\end{document}、以及额外的波矢\begin{document}${{{k}}_a}$\end{document}来描述其光学性质. 研究发现, 该赝局域有效介质兼具局域和非局域介质的性质, 在与\begin{document}${{{k}}_a}$\end{document}垂直的晶面上表现出局域介质的光学性质, 而在与\begin{document}${{{k}}_a}$\end{document}平行的晶面则表现出非局域介质的光学性质, 如负折射、全反射等. 进一步研究表明, 对于所有入射角的光波在穿过拥有奇数层结构单元的赝局域有效介质时, 都会出现额外的\begin{document}$\text{π}$\end{document}相位差, 基于此设计了一种全角度相位光栅. 相对于传统的光学材料, 赝局域介质具有更加丰富有趣的光学性质, 有望在未来应用到更多的新型光学器件设计之中.
外尔超构材料里频率分离外尔点的数值设计
周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波
2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
摘要:
外尔半金属是指三维能带结构具有手性拓扑点简并特征的无能隙固体材料, 并且简并点附近的色散关系遵从外尔方程的描述. 它具有很多独特的电子输运性质, 比如: 费米弧表面态、负磁阻效应、手性朗道能级等. 类比电子系统的外尔半金属材料, 人们设计出理想外尔超构材料, 在电磁波体系里实现了频率一致的外尔点简并. 本文打破这种超构材料的镜面对称性, 通过数值计算发现了原本频率一致的外尔点出现了依赖手性的频移, 频移的正负由外尔点的手性决定, 因此实现了手性不同的外尔点在频率上的分离, 同时也检验了\begin{document}$\left\langle {001} \right\rangle $\end{document}晶面上外尔点之间的费米弧表面态.
综述
绝缘体上铌酸锂薄膜片上光子学器件的研究进展
李庚霖, 贾曰辰, 陈峰
2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
摘要:
铌酸锂晶体具有卓越的电光和非线性光学性质, 一直以来都被认为是最有前景的集成光子学基质材料之一. 也正是由于铌酸锂晶体多方面优良的光学性能, 近年来新兴的铌酸锂薄膜技术在集成光子学的研究中受到了极大的关注. 借助于先进的微纳加工技术, 许多高性能的铌酸锂集成光子学器件已经得以实现. 本文总结了几种微纳加工技术在基于铌酸锂薄膜的片上光子学器件制备中的应用, 介绍了铌酸锂薄膜片上光子学器件的最新进展, 并展望了其在集成光子学研究中的潜在应用.
总论
基于气体折射率方法的真空计量
许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明
2020, 69(15): 150601. doi: 10.7498/aps.69.20200706
摘要:
为保证测量系统的长期稳定性和复现性, 真空计量将使用气体密度来表征. 利用法布里-珀罗腔可实现对气体折射率的精密测量、并反演得出气体密度. 这种基于光学方法的真空计量方法是将气体宏观介电常数与原子微观极化参数联系在一起, 由量子标准取代目前基于水银压力计的实物标准. 本文讨论了气体折射率至气体压力的反演过程, 并采用激光锁定法布里-珀罗腔的方法测定稀薄氩气的折射率, 讨论了相关参数对所测得气体压力不确定度的贡献. 在1个大气压范围内, 对氩气压力测量的标准不确定度为\begin{document}$u = \sqrt {{{(6\;{\rm{mPa}})}^2} + {{(73 \times {{10}^{ - 6}}p)}^2}} $\end{document}.
一种快速估算聚焦型空间X射线仪器粒子本底水平的方法及应用
蒋文丽, 戚利强, 韩大炜, 宋泽宇, 张爱梅, 李炜, 徐玉朋, 陈勇, 张春雷, 张耀锋, 李刚
2020, 69(15): 150701. doi: 10.7498/aps.69.20200576
摘要:
仪器的本底是空间天文观测项目实施过程中关注的一个重要内容, 对于聚焦型空间X射线望远镜, 仪器的粒子本底水平直接关系到观测灵敏度及本底重建的系统误差. 因此, 在仪器设计及工程实现迭代过程中, 需要确定仪器粒子本底水平, 保证其在可接受范围内. 本文发展了一种基于面密度插值快速估计聚焦型空间X射线望远镜粒子本底的方法, 该方法同时具有较高的本底估计精度和快的计算速度, 适合于在望远镜方案设计的早期对各种设计方案的本底屏蔽效果进行快速估计并据此提出优化设计的建议, 可以大大提高早期方案设计的有效性, 对于聚焦型空间高能天文仪器的研制及其他类似领域具有一定的参考意义.
原子和分子物理学
SeH+离子低激发态的电子结构和跃迁性质的理论研究
滑亚文, 刘以良, 万明杰
2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
摘要:
采用内收敛多组态相互作用及Davidson修正方法精确地计算了SeH+离子能量最低的3个离解极限对应的12个Λ—S态的势能曲线. 计算中考虑了芯-价电子关联、标量相对论修正和自旋-轨道耦合效应. 结果表明在30000—40000 cm–1处Ω态的曲线存在许多避免交叉, 导致a2, b0+, A12, A21, A30, A40+和c1态变为了双势阱. 通过求解径向薛定谔方程得到了12个Λ—S态和9个Ω态的光谱常数. 基于势能曲线和跃迁偶极矩, 预测出了\begin{document}$ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$\end{document}\begin{document}$ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$\end{document}跃迁的弗兰克-康登因子、辐射速率和辐射寿命. 首次系统地报道了SeH+离子的光谱与跃迁性质.
气体、等离子体和放电物理
脉冲电弧等离子体激励控制超声速平板边界层转捩实验
唐冰亮, 郭善广, 宋国正, 罗彦浩
2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
摘要:
脉冲电弧等离子体激励器具有局部加热效应强、扰动范围广等特点, 在超声速流动控制中具有广阔的应用前景. 本文运用电参数测量系统和高速纹影技术研究了脉冲电弧等离子体激励器在Ma = 3来流条件下的电特性和流场特性; 采用纳米粒子平面激光散射技术对超声速平板边界层的流动结构进行了精细测量, 并对不同等离子体激励频率下的边界层转捩特性进行了研究. 实验结果表明, 脉冲电弧放电会产生速度较高的前驱冲击波和温度较高的热沉积区, 给边界层施加连续不断的扰动. 施加扰动的脉冲电弧等离子体激励能够促进超声速平板边界层转捩. 并且脉冲放电的高频冲击效应可以促进转捩提前发生, 且频率越高, 效果越好, 当施加激励频率为60 kHz时, 转捩区长度为0, 湍流边界层厚度为25 mm. 脉冲电弧等离子体激励器可以用来促进超声速边界层转捩.
凝聚物质:结构、力学和热学性质
基于声子晶体板的弹性波拓扑保护边界态
郑周甫, 尹剑飞, 温激鸿, 郁殿龙
2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
摘要:
基于声子晶体拓扑特性构造的弹性波拓扑态在波调控方面具有背散射抑制和路径缺陷免疫等优异特性, 受到广泛关注. 本文设计了一种声子晶体板结构, 通过在初始元胞中引入具有一定旋转角度的三角形穿孔实现对称性破缺, 从而构造四重简并态. 与现有利用能带“区域折叠”进行构造的方法相比, 该方法简化了声子晶体的元胞构型. 元胞的主要变量为三角形穿孔围绕其中心旋转角度\begin{document}$\theta $\end{document}, 研究发现, 旋转角度\begin{document}$\theta =0^\circ $\end{document}时, 元胞能带结构存在两个二重简并态, 调整旋转角度到\begin{document}$ \pm 33^\circ $\end{document}时, 布里渊区中心Γ点处出现四重简并态, 并发现旋转角度越过\begin{document}$ \pm 33^\circ $\end{document}时均会发生能带反转, 这表明调整晶体结构参数\begin{document}$\theta $\end{document}使得体系经历拓扑相变. 利用具有不同拓扑相的声子晶体组成超元胞, 并通过计算其投影能带, 发现能带结构中存在弹性波带隙以及不同赝自旋方向的两种边界态. 在此基础上, 构造多种不同类型的弹性声子晶体板, 验证了拓扑边界态对弹性波传播的强背散射抑制、缺陷免疫单向传播和多波导通道开关特性. 本文中所设计的弹性声子晶体板具有结构简单、特性易调的特点, 为利用拓扑态实现弹性波调控提供了一个可行方案.
氟化镁高压萤石结构稳定性及热物性的数值模拟
孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利
2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
摘要:
氟化镁(MgF2)是工业用途广泛的重要碱土金属氟化物, 也是矿物质氟镁石的主要成分, 相比于电子结构和光学特性的研究, 人们从地球物理学的角度给予MgF2高压热物性的研究明显不够, 而组成地球下地幔矿物的高压熔化、热膨胀等热物性预测对理解地球的结构、动力学、演化及起源至关重要. 本文利用基于密度泛函理论的第一性原理方法, 通过热力学、动力学、力学稳定性计算表明萤石结构为MgF2高压结构, 根据等焓原理, 分别结合广义梯度近似和局域密度近似确定出了零温下MgF2晶体从稳定金红石结构到高压萤石结构的相转变压力为19.26 GPa和18.15 GPa, 且萤石结构至少稳定到135 GPa (相当于下地幔压力); 利用基于有效势参数模型的经典分子动力学方法, 通过模拟特定压力下MgF2体系的摩尔体积、总能随温度的变化确认了MgF2萤石结构在300—6000 K温度范围内的高温稳定性. 在此基础上, 考虑选用能够提高密堆固体平衡特性的交换相关泛函形式的广义梯度近似方法且结合准谐德拜模型, 以及利用根据从头算Hartree-Fock方法获得的数据拟合得到的可靠经验势参数结合经典分子动力学方法, 共同预测了萤石结构的MgF2在300—1500 K和0—135 GPa的温度和压力范围内的体积热膨胀系数、等温体模量、热弹性参数等重要热力学参量. 研究表明: MgF2萤石结构基于体积热膨胀系数和等温体模量得到的热弹性参数并非物态方程研究中通常假定的常数, 但在高温高压条件下, 其值接近于常数.
凝聚物质:电子结构、电学、磁学和光学性质
电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控
张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟
2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
摘要:
半导体与金属接触是制作纳电子和光电子器件时非常重要的问题, 接触类型对器件的功能实现和性能影响很大. 为了制备高性能多功能化器件, 就必须对界面处的势垒高度和接触类型进行调控. 采用基于密度泛函理论的第一性原理计算研究了外电场作用下graphene/InSe范德瓦耳斯异质结的电子结构. 计算结果表明异质结中的graphene和InSe保留了各自的本征电子性质, 在界面处形成了欧姆接触. 外电场可以有效调控graphene/InSe异质结中的肖特基势垒, 不但可以调控肖特基势垒的高度, 而且可以调控界面接触类型. 外电场还可以有效调控graphene和InSe界面电荷转移的数量和方向.
AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射
张雪冰, 刘乃漳, 姚若河
2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
摘要:
AlGaN/GaN界面处的二维电子气迁移率是描述高电子迁移率晶体管特性的一个重要参数, 极化光学声子散射是高温时限制二维电子气迁移率的主要散射机制. 本文对极化光学声子散射进行计算, 结果表明在二维电子气浓度为6 × 1011—1 × 1013 cm–2, 温度为200—400 K范围内, 极化光学声子散射因素决定的迁移率随温度的变化近似为\begin{document}$ \mu_{\rm PO} = AT^{-\alpha} ~ (\alpha = 3.5) $\end{document}; 由于GaN中光学声子能量较大, 吸收声子对迁移率的影响远大于发射声子的影响. 进一步讨论了极化光学声子散射因素决定的迁移率随光学声子能量变化的趋势, 表明增加极化光学声子能量可提高二维电子气的室温迁移率.
物理学交叉学科及有关科学技术领域
强电负性配体诱导CsPbBr3纳米晶蓝光出射
刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟
2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
摘要:
全无机钙钛矿纳米晶因其出色的光学性能(量子产率高、发射带宽窄、吸收截面大等)与简单便利的制备过程等特点受到了各国研究人员的极大关注. 目前, 制备的无机钙钛矿纳米晶主要集中在绿光和红光波段, 蓝光无机钙钛矿纳米晶研究较少, 且存在荧光量子效率低、稳定性差的问题, 限制了其应用范围. 选用强电负性2-丙烯酰胺-2-甲基丙磺酸作为配体, 采用热注入法制备无机钙钛矿纳米晶CsPbBr3, 纳米晶呈片状, 尺寸均一, 结晶度好, 荧光峰位于462 nm, 半高宽为20 nm, 荧光量子产率可达80%. 通过测量CsPbBr3纳米晶的时间分辨光致发光谱和瞬态吸收谱, 研究了CsPbBr3纳米晶产生蓝光的物理机理. 该研究丰富了配体对于纳米晶相互作用的研究内容, 极大地促进了无机钙钛矿纳米晶在光学器件中的应用.
基于驻极体材料的机械天线式低频/甚低频通信磁场传播模型
王琛, 崔勇, 宋晓, 袁海文
2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
摘要:
低频/甚低频电磁波的频率极低, 趋肤深度较深, 可以以很小的损耗穿透海水和地下来进行通信. 传统的低频发射天线存在尺寸和功耗较大的问题, 本文采用驻极体材料设计了一种机械天线式低频/甚低频发射天线结构. 利用激励装置驱动驻极体所带极化电荷进行机械运动, 从而产生交变的电磁场, 并激发出电磁波携带能量和信息, 在一定的媒质中传播, 以实现电磁波的高效辐射, 颠覆了传统低频/甚低频发信系统中天线尺寸需与辐射信号波长相比拟的约束. 基于该结构, 本文建立了磁场传播的解析模型, 并据此研究了天线尺寸、形状等相关参数对天线性能的影响. 给出了天线所产生场强随几何参数如半径、高度等的变化规律, 同时对比了两种不同磁场模型仿真计算的结果, 阐述了在实际情况中需要根据天线尺寸和传播距离等条件来选择适合的模型. 研究工作对于指导机械天线设计和优化天线结构具有重要意义.
近红外光刺激神经细胞钙离子光激活
耿俊娴, 李少强, 王诗琪, 黄春, 吕云杰, 胡睿, 屈军乐, 刘丽炜
2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
摘要:
钙离子(Ca2+)是细胞的主要信息传输通道, 研究Ca2+激活对阐述亚细胞层次生物过程具有重要意义, 光激活是目前研究细胞内Ca2+传输和控制的主要方式之一. 本文利用近红外脉冲激光刺激标记有金纳米棒(gold nanorods, GNRs)的人神经母细胞瘤细胞(SH-SY5Y)的Ca2+信号传导, 并利用钙离子指示剂(Fluo-4, AM)对其进行双光子荧光成像. 实验采用功率为0.5 mW, 波长为800 nm的激发光, 平均10 s就可实现Ca2+光激活, 标记GNRs的神经细胞Ca2+释放速度是未标记GNRs的6倍. 研究结果表明GNRs通过局域表面等离子体共振将脉冲激光瞬间转化为热量, 改变膜电容, 使细胞膜去极化并引发动作电位, 使细胞外Ca2+流入, 证明了借助GNRs来增强神经细胞Ca2+激活的可行性, 为神经细胞离子通道研究提供了一种光学手段.