搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波段电磁超材料吸波器折射率传感特性

王鑫 王俊林

引用本文:
Citation:

太赫兹波段电磁超材料吸波器折射率传感特性

王鑫, 王俊林

Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band

Wang Xin, Wang Jun-Lin
PDF
HTML
导出引用
  • 太赫兹超材料吸波器作为一类重要的超材料功能器件, 除了可以实现对入射太赫兹波的完美吸收外, 还可以作为折射率传感器实现对周围环境信息变化的捕捉与监测. 通常从优化表面金属谐振单元结构和改变介质层材料和形态两个方面出发, 改善太赫兹超材料吸波器的传感特性. 为深入研究中间介质层对太赫兹超材料吸波器传感特性的影响, 本文基于金属开口谐振环阵列设计实现了具有连续介质层、非连续介质层和微腔结构的3款太赫兹超材料吸波器, 并对其传感特性与传感机理进行了深入研究. 结果表明, 为了提高太赫兹超材料吸波器的折射率灵敏度、最大探测范围等传感特性, 除了可以选用相对介电常数较小的材料作为中间介质层外, 还可以改变中间介质层的形态, 进而减小中间介质层对谐振场的束缚, 增强谐振场与被测分析物之间的耦合. 与传统的具有连续介质层的太赫兹超材料吸波器相比, 具有非连续介质层和微腔结构的超材料吸波器具有更优越的传感特性, 可应用于对待测分析物的高灵敏度、快速检测, 在未来的传感领域具有更加广阔的应用前景.
    Terahertz metamaterial (THz MM) absorber, as an important type of MM functional device, can not only achieve perfect absorption of incident THz waves, but also act as a refractive index sensor to capture and monitor changes in the information about surrounding environment. Generally, the sensing characteristics of the THz MM absorber can be improved by optimizing the structure of the surface metal resonance unit and changing the material and shape of the dielectric layer. In order to further study the influence of the intermediate dielectric layer on the sensing characteristics of the THz MM absorber, in this paper we implement three THz MM absorbers with continuous dielectric layer, discontinuous dielectric layer and microcavity structure based on the metallic split-ring resonator array, and conduct in-depth study of their sensing characteristics and sensing mechanism. The THz MM absorber with continuous dielectric layer and metallic split-ring resonator array can be used as a refractive index sensor to realize the sensing detection of analytes coated on its surface with different refractive indexes. However, it can be seen from its corresponding refractive index frequency sensitivity and FOM value that the detection sensitivity of this sensor is limited, and its sensing performance still needs improving. The main reason is that most of the resonant electromagnetic (EM) field of the THz MM absorber is tightly bound in the intermediate dielectric layer, and only the fringe field extending to the surface of the MM absorber resonant unit array can interact with the analyte to be measured, and the intensity of this part of the field directly determines the sensitivity of the sensor. In order to further improve the refractive index frequency sensitivity of the THz MM absorber, reduce the restriction of the intermediate dielectric layer to the resonant EM field, and enhance the interaction between the resonant EM field and the analyte to be measured, a THz MM absorber with discontinuous dielectric layer is proposed and studied. Compared with the THz MM absorber with continuous dielectric layer, the THz MM absorber based on discontinuous dielectric layer can be used as a refractive index sensor to realize higher-sensitivity sensing and detection of the analyte coated on the surface. In order to further enhance the interaction between the resonant EM field and the analyte to be measured, and improve the refractive index frequency sensitivity of the THz MM absorber, a THz MM absorber with a microcavity structure is proposed. For this THz MM absorber, the analyte to be measured filled in the microcavity structure can serve as the intermediate dielectric layer of the THz MM absorber, and when the metallic split-ring resonator array is completely immersed in the analyte to be measured, the resonant EM field originally confined in the intermediate dielectric layer and the analyte to be measured completely overlap in space. Therefore, compared with the first two THz MM absorbers, THz MM absorber with a microcavity structure achieves the tightly and fully contacting the resonant EM field, thereby greatly improving its sensitivity as a sensor. The results show that in order to improve the sensing characteristics of the THz MM absorber, such as the refractive index sensitivity and the maximum detection range, in addition to using the materials with lower relatively permittivity as the intermediate dielectric layer, the morphology of the intermediate dielectric layer can be changed, thereby reducing the restraint of the intermediate dielectric layer on the resonant field and enhancing the coupling between the resonant field and the analyte to be measured. Compared with the conventional THz MM absorber with continuous dielectric layer, the MM absorber with discontinuous dielectric layer and microcavity structure have many superior sensing characteristics, and can be applied to the high-sensitivity and rapid detection of analytes to be measured, and has a broader application prospect in the future sensing field.
      通信作者: 王俊林, wangjunlin@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51965047)、内蒙古自然科学基金(批准号: 2018MS06007)和内蒙古大学 2018 年高层次人才引进科研启动项目(批准号: 21700-5185128, 21700-5185131)资助的课题.
      Corresponding author: Wang Jun-Lin, wangjunlin@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51965047), the Inner Mongolia Natural Science Foundation, China (Grant No. 2018MS06007), and the Inner Mongolia University 2018 High-level Talent Introduction and Research Startup Project, China (Grant Nos. 21700-5185128, 21700-5185131).
    [1]

    Lee Y K 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Zhang X C, Alexander S, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [3]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer US) pp1−26

    [4]

    张活 2018 博士学位论文 (西安: 西安电子科技大学)

    Zhang H 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Wang J, Wang S, Singh R 2013 Chin. Opt. Lett. 11 011602Google Scholar

    [6]

    Wang X, Zhang B Z, Wang W J, Wang J L, Duan J P 2017 IEEE Photonics J. 9 4600512Google Scholar

    [7]

    黄文媛 2013 硕士学位论文 (成都: 西南交通大学)

    Huang W Y 2013 M. S. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 2365Google Scholar

    [10]

    Chen T, Li S, Sun H 2012 Sensors 12 2742Google Scholar

    [11]

    张玉萍, 李彤彤, 吕欢欢 2015 物理学报 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [12]

    Wang X, Zhang B Z, Wang W J, Duan J P 2017 IEEE Photonics J. 9 4600213Google Scholar

    [13]

    毛前军, 冯春早 2019 光学学报 39 0816001Google Scholar

    Mao Q J, Feng C Z 2019 Acta Opt. Sin. 39 0816001Google Scholar

    [14]

    Wang W, Yan F P, Tan S Y 2017 Photonics Res. 5 571Google Scholar

    [15]

    Yan X, Yang M S, Zhang Z 2019 Biosens. Bioelectron. 126 485Google Scholar

    [16]

    Srivastava Y K, Cong L Q, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [17]

    Ahmed S, Sungjoon L 2018 Biosens. Bioelectron. 117 398Google Scholar

    [18]

    Han B J, Han Z H, Qin J Y 2019 Talanta 192 1Google Scholar

    [19]

    Singh R, Al-Naib A I, Koch M 2010 Opt. Express 18 13044Google Scholar

    [20]

    Saraswati B, Kyoungsik K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [21]

    Li W Y, Su Y, Zhai X 2018 IEEE Photonic. Tech. Lett. 30 2068Google Scholar

    [22]

    Shen S M, Liu Y L, Liu W Q 2018 Mater. Res. Express 5 125804Google Scholar

    [23]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [24]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [25]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [26]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [27]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [28]

    Hu T, Chieffo L R, Brenckle M A, et al. 2016 Adv. Mater. 23 3197Google Scholar

    [29]

    Dmitriev A, Hägglund C, Chen S 2008 Nano Lett. 8 3893Google Scholar

    [30]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [31]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [32]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [33]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [34]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. 117 014504Google Scholar

  • 图 1  基于连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图

    Fig. 1.  Schematic diagram of THz MM absorber based on continuous dielectric layer and metallic split-ring resonator array.

    图 2  具有连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 2.  Simulated absorption characteristic curve of THz MM absorber with continuous dielectric layer.

    图 3  (a) 谐振频率处的表面电流分布; (b) 谐振频率处的表面电场分布

    Fig. 3.  (a) Surface current distribution at the resonance frequency; (b) surface electric field distribution at the resonance frequency.

    图 4  (a) 谐振频率处$y$ = 0 截面的电场分布; (b) 谐振频率处$x$ = 0 截面的磁场分布

    Fig. 4.  (a) Electric field distribution at cross section of $y$ = 0 at the resonance frequency; (b) magnetic field distribution at cross section of $x$ = 0 at the resonance frequency

    图 5  在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 5.  Simulated absorption characteristic curves of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 6  在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Fig. 6.  Resonance frequency shifts and linear fitting of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 7  介质层材料的相对介电常数变化对传感器折射率频率灵敏度的影响

    Fig. 7.  Influence of relative permittivity of dielectric layer material on the refractive index frequency sensitivity of the sensor.

    图 8  在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移

    Fig. 8.  Resonance frequency shifts of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.

    图 9  选用连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响

    Fig. 9.  Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with continuous dielectric layer.

    图 10  基于非连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图

    Fig. 10.  Schematic diagram of THz MM absorber based on discontinuous dielectric layer and metallic split-ring resonator array.

    图 11  具有非连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 11.  Simulated absorption characteristic curve of THz MM absorber with discontinuous dielectric layer.

    图 12  在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 12.  Simulated absorption characteristic curves of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 13  在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Fig. 13.  Resonance frequency shifts and linear fitting of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 14  在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移

    Fig. 14.  Resonance frequency shifts of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.

    图 15  选用非连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响

    Fig. 15.  Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with discontinuous dielectric layer.

    图 16  待测分析物充当介质层的太赫兹超材料吸波器的结构示意图

    Fig. 16.  Schematic diagram of THz MM absorber whose analyte to be measured acts as dielectric layer.

    图 17  未填充待测分析物的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 17.  Simulated absorption characteristic curve of THz MM absorber without filling the analyte to be measured.

    图 18  分析物折射率从n = 1变化到n=1.8时具有微腔结构的太赫兹超材料吸波器的吸收特性仿真曲线

    Fig. 18.  Simulated absorption characteristic curve of THz MM absorber with microcavity structure under analyte refractive index range from n = 1 to n = 1.8.

    图 19  分析物折射率从n = 1变化到n = 1.8时具有微腔结构的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Fig. 19.  Resonance frequency shifts and linear fitting of THz MM absorber with microcavity structure under analyte refractive index changes from n = 1 to n = 1.8.

    表 1  太赫兹超材料吸波器的参数对比

    Table 1.  Comparison of parameters of THz MM absorbers

    太赫兹超材料吸波器的
    吸收与传感特性参数
    具有不同介质层的太赫兹超材料吸波器
    连续介质层非连续介质层微腔结构
    谐振频率/THz0.1830.2450.277
    吸收率/%99.9793.3086.60
    谐振峰半高宽FWHM/GHz9.313.015.0
    品质因数Q19.718.818.4
    折射率灵敏度S/(GHz·RIU–1)8.665.8101.5
    FOM值0.925.066.77
    下载: 导出CSV
  • [1]

    Lee Y K 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Zhang X C, Alexander S, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [3]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer US) pp1−26

    [4]

    张活 2018 博士学位论文 (西安: 西安电子科技大学)

    Zhang H 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Wang J, Wang S, Singh R 2013 Chin. Opt. Lett. 11 011602Google Scholar

    [6]

    Wang X, Zhang B Z, Wang W J, Wang J L, Duan J P 2017 IEEE Photonics J. 9 4600512Google Scholar

    [7]

    黄文媛 2013 硕士学位论文 (成都: 西南交通大学)

    Huang W Y 2013 M. S. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 2365Google Scholar

    [10]

    Chen T, Li S, Sun H 2012 Sensors 12 2742Google Scholar

    [11]

    张玉萍, 李彤彤, 吕欢欢 2015 物理学报 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [12]

    Wang X, Zhang B Z, Wang W J, Duan J P 2017 IEEE Photonics J. 9 4600213Google Scholar

    [13]

    毛前军, 冯春早 2019 光学学报 39 0816001Google Scholar

    Mao Q J, Feng C Z 2019 Acta Opt. Sin. 39 0816001Google Scholar

    [14]

    Wang W, Yan F P, Tan S Y 2017 Photonics Res. 5 571Google Scholar

    [15]

    Yan X, Yang M S, Zhang Z 2019 Biosens. Bioelectron. 126 485Google Scholar

    [16]

    Srivastava Y K, Cong L Q, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [17]

    Ahmed S, Sungjoon L 2018 Biosens. Bioelectron. 117 398Google Scholar

    [18]

    Han B J, Han Z H, Qin J Y 2019 Talanta 192 1Google Scholar

    [19]

    Singh R, Al-Naib A I, Koch M 2010 Opt. Express 18 13044Google Scholar

    [20]

    Saraswati B, Kyoungsik K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [21]

    Li W Y, Su Y, Zhai X 2018 IEEE Photonic. Tech. Lett. 30 2068Google Scholar

    [22]

    Shen S M, Liu Y L, Liu W Q 2018 Mater. Res. Express 5 125804Google Scholar

    [23]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [24]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [25]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [26]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [27]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [28]

    Hu T, Chieffo L R, Brenckle M A, et al. 2016 Adv. Mater. 23 3197Google Scholar

    [29]

    Dmitriev A, Hägglund C, Chen S 2008 Nano Lett. 8 3893Google Scholar

    [30]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [31]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [32]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [33]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [34]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. 117 014504Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [6] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [8] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [11] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [12] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [13] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [16] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [18] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [19] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [20] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
计量
  • 文章访问数:  9731
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-09-04
  • 上网日期:  2021-01-21
  • 刊出日期:  2021-02-05

/

返回文章
返回