搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化镍在倒置平面钙钛矿太阳能电池中的应用进展

王佩佩 张晨曦 胡李纳 李仕奇 任炜桦 郝玉英

引用本文:
Citation:

氧化镍在倒置平面钙钛矿太阳能电池中的应用进展

王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英

Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer

Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying
PDF
HTML
导出引用
  • 近年来有机-无机杂化钙钛矿太阳能电池(perovskite solar cells, PSCs)因具有光电转换效率高、制备工艺简单等优点而受到广泛关注. 空穴传输层(hole transport layer, HTL)的选择及其优化对器件的性能至关重要. 氧化镍(NiOx) HTL具有化学稳定性好、空穴迁移率高、制备方法简单等特点, 在PSCs中得到了广泛应用. 本综述从NiOx HTL在平面PSCs中的应用入手, 系统介绍了通过掺杂和表面修饰法实现对NiOx HTL薄膜的结构和光电性能的改性, 并从能级匹配、空穴迁移率及结晶性等多个角度详细评述了NiOx改性对PSCs光电转换效率、填充因子、开路电压、短路电流和稳定性的影响规律, 最后对于NiOx平面PSCs的未来进行了展望.
    In recent years, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted wide attention due to their high photoelectric conversion efficiency and simple preparation process. Hole transport layer (HTL) is one of the most critical components in PSCs. As a kind of inorganic HTL material, nickel oxide (NiOx) has been widely used in perovskite solar cells because of its excellent advantages, such as outstanding chemical stability, high carrier mobility, simple methods for its preparation, etc. In this paper, the applications of NiOx HTL in planar PSCs are systematically summarized from the aspects of the improvment of its structure and photoelectric properties by doping and interface modification. The reasons for affecting the device performances, i.e. fill factor, open-circuit voltage, short-circuit current, photoelectric conversion efficiency, and stability are emphatically analyzed from several aspects, such as energy level matching, hole mobility and crystallinity. In addition, the future development directions of the planar PSCs are prospected.
      通信作者: 张晨曦, zhangchenxi@tyut.edu.cn ; 郝玉英, haoyuying@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62074108)、国家自然科学基金委员会-山西省煤基低炭联合基金(批准号: U1710115)、山西省科学技术重大专项(批准号: 20201101012)、山西省科技创新培育团队建设项目(批准号: 201805D131012-3)和 山西省自然科学基金(批准号: 201901D211114)资助的课题
      Corresponding author: Zhang Chen-Xi, zhangchenxi@tyut.edu.cn ; Hao Yu-Ying, haoyuying@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074108), the Joint Foundation of National Natural Science Foundation of China and Shanxi Coal-Based Low-Carbon Nurturing Project (Grant No. U1710115), the Major Special Projects of Shanxi Province in Science and Technology, China (Grant No. 20201101012), the Platform and Base Special Project of Shanxi, China (Grant No. 201805D131012-3), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211114)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [4]

    Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html

    [5]

    Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar

    [6]

    Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar

    [7]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [8]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar

    [9]

    Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar

    [10]

    Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar

    [11]

    Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar

    [12]

    Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar

    [13]

    Zuo C, Ding L 2015 Small 11 5528Google Scholar

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [15]

    Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar

    [16]

    Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar

    [17]

    Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [18]

    Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [19]

    Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar

    [20]

    Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar

    [21]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [22]

    Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar

    [23]

    Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar

    [24]

    Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar

    [25]

    Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar

    [26]

    Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar

    [27]

    Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar

    [28]

    Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar

    [29]

    Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar

    [30]

    Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar

    [31]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar

    [32]

    Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar

    [33]

    Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar

    [34]

    Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar

    [35]

    Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar

    [36]

    Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar

    [37]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [38]

    Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar

    [39]

    Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar

    [40]

    Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar

    [41]

    Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar

    [42]

    Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar

    [43]

    Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar

    [44]

    Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar

    [45]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar

    [46]

    Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar

    [47]

    He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar

    [48]

    Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar

    [49]

    Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar

    [50]

    Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar

    [51]

    Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar

    [52]

    Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar

    [53]

    Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar

    [54]

    Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar

    [55]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar

    [56]

    Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar

    [57]

    Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar

    [58]

    Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar

    [59]

    Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar

  • 图 1  钙钛矿太阳电池结构示意图

    Fig. 1.  Schematic diagram of PSCs.

    图 2  NiO的立方晶体结构

    Fig. 2.  NiO cubic crystal structure

    图 3  (a) NiOx和Cu:NiOx薄膜的紫外光电子能谱[33]; (b) 基于NiOx或Cs: NiOx单空穴器件的J-V曲线, 器件结构为FTO/ NiOx 或 Cs:NiOx/MoO3/Ag[37]; (c) 不同HTLs的PSCs能级图; (d) 倒置平面PSCs的结构[38]; (e) F6TCNNQ掺杂分子的化学结构及其与NiOx的能级排列[41]; (f) NiOx与TCNQ, F2TCNQ, F4TCNQ和F2HCNQ的电荷转移和能级分布示意图[17]

    Fig. 3.  (a) Ultraviolet photoelectron spectra of NiOx and Cu:NiOx films[33]; (b) J-V curves of hole only devices with NiOx or Cs:NiOx hole extraction layers, the device structure is FTO/ NiOx or Cs:NiOx/MoO3/Ag[37]; (c) energy-level diagram of the various layers in the PSCs exhibiting the transfer of photoinduced holes; (d) structural illustration of the inverted planar PSCs[38]; (e) band alignment of NiOx and molecular dopants of F6TCNNQ and the chemical structure[41]; (f) schematic of charge transfer and energy level distribution of NiOx, TCNQ, F2TCNQ, F4TCNQ, and F2HCNQ[17].

    图 4  (a) 钙钛矿前驱体在NiOx薄膜以及甘油处理后NiOx膜上的接触角[46]; (b) 三种氨基酸的三维分子模型[47]; (c) NiOx和NiOx/FDA 薄膜上钙钛矿层的SEM图像; (d) NiOx和NiOx/FDA 薄膜上钙钛矿层的X射线衍射图[48]; (e) 基于TPV实验计算的具有不同HTLs器件的载流子复合寿命与光强度关系图[49]; (f) 在10 kHz下KCl修饰前后NiOx基PSCs的Mott-Schottky图, 以及基于TPV实验计算的KCl修饰前后NiOx基PSCs的陷阱态密度谱[51]

    Fig. 4.  (a) Contact angles of the solvents of perovskite precursor solution on NiOx: pristine film and with glycerol treatment[46]; (b) molecular 3D models and formula of three amino acids[47]; (c) SEM images of the perovskite layer on NiOx and NiOx/FDA films; (d) XRD patterns of the perovskite layer on NiOx and NiOx/FDA films[48]; (e) recombination lifetime versus light intensity plots of complete cells having various HTLs, calculated by TPV experiments[49]; (f) Mott–Schottky plots for the CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs at 10 kHz and trap density of states (DOS) spectra for CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs[51]

    表 1  基于掺杂NiOx薄膜的PSCs的性能

    Table 1.  Performances of the PSCs based on doped NiOx films.

    器件结构电压
    Voc/V
    电流
    Jsc/(mA·cm–2)
    填充因子FF光电转换效率PCE/%掺杂/方法文献
    ITO/F2HCNQ:NiOx/PMMA/CsMAFA/PCBM/BCP/Ag1.1423.440.8322.13F2HCNQ:NiOx spin-coating[17]
    ITO/F6TCNNQ:NiOx/CsFAMA/
    PCBM/ZrAcac/Ag
    1.1223.180.8020.86F6TCNNQ/Spin coating[41]
    ITO/Cu:NiOx/CH3NH3PbI3/C60/BCP/Ag1.1222.280.8120.26Cu:NiOx NPs/Spin coating[42]
    ITO/Li:Co NiOx/MA1yFAyPbI3xClx/
    PCBM/BCP/Ag
    1.0923.800.7820.10Li:Co/Spin-coating[40]
    ITO/Sr:NiOx/CH3NH3PbI3/C60/BCP/Ag1.1422.660.7619.49Sr:NiO/Spin-coating[38]
    ITO/NiOx:AGQDs/CsFAMA/PCBM/BCP/Ag1.0522.300.8319.40NiOx:AGQDs/Spin-coating[43]
    FTO/Cs:NiOx/MAPbI3/PCBM/ZrAcac/Ag1.1221.770.7919.35Cs/Spin coating sol[37]
    ITO/NiMgO/CH3NH3PbI3/PCBM/ZnMgO/Al1.0821.300.8018.50Mg/Sputtering[44]
    FTO/NIR-Co:NiOx/MAPbI3/PC61BM/PEI/Ag1.0920.460.8017.77Co/Spin-coating[35]
    FTO/NiMgLiO/MAPbI3/PCBM/Ti(Nb)Ox/Ag1.0720.210.7516.20Li-Mg/Spray pyrolysis[45]
    下载: 导出CSV

    表 2  基于改性NiOx薄膜的PSCs的性能

    Table 2.  Performances of the PSCs based on modified NiOx films

    器件结构电压
    Voc/V
    电流
    Jsc/(mA·cm–2)
    填充因子FF光电转换效率PCE/%改性/方法文献
    ITO/NiOx/KCl/CsFAMA/PCBM/ZrAcac/Ag1.1522.890.8020.96KCl or NaCl/
    Spin-coating
    [51]
    ITO/NiOx/PFN-P2/CsFAMA/C60/BCP/Ag 1.1323.330.7820.50PFN-P2[53]
    FTO/NiOx/SDBS/CH3NH3PbI3/
    PCBM/BCP/Ag
    1.1222.940.7820.15SDBS/Spin-coating[54]
    ITO/NiOx/NH4F/CH3NH3PbI3/C60/BCP/Ag1.0922.450.7718.94NH4F/Spin-coating[50]
    ITO/NiOx/TPI-6MEO/MAPbI3/
    PCBM/BCP/Ag
    0.9823.310.8118.42TPI-6MEO/
    Spin-coating
    [49]
    ITO/NiOx/SAM/Perovskite/
    PCBM/Bis-C60/Ag
    1.1121.700.7618.40Benzoic acid modification[55]
    ITO/NiOx/FDA/CH3NH3PbI3/PCBM/AgAl1.0422.550.7617.87FDA modification[48]
    FTO/NiOx/PTAA/FA1–xMAxPb
    (I3–yBry)/PCBM/Au
    1.0621.540.7517.10PTAA/Sol–gel[56]
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [4]

    Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html

    [5]

    Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar

    [6]

    Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar

    [7]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [8]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar

    [9]

    Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar

    [10]

    Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar

    [11]

    Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar

    [12]

    Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar

    [13]

    Zuo C, Ding L 2015 Small 11 5528Google Scholar

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [15]

    Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar

    [16]

    Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar

    [17]

    Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [18]

    Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [19]

    Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar

    [20]

    Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar

    [21]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [22]

    Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar

    [23]

    Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar

    [24]

    Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar

    [25]

    Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar

    [26]

    Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar

    [27]

    Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar

    [28]

    Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar

    [29]

    Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar

    [30]

    Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar

    [31]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar

    [32]

    Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar

    [33]

    Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar

    [34]

    Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar

    [35]

    Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar

    [36]

    Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar

    [37]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [38]

    Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar

    [39]

    Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar

    [40]

    Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar

    [41]

    Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar

    [42]

    Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar

    [43]

    Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar

    [44]

    Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar

    [45]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar

    [46]

    Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar

    [47]

    He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar

    [48]

    Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar

    [49]

    Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar

    [50]

    Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar

    [51]

    Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar

    [52]

    Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar

    [53]

    Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar

    [54]

    Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar

    [55]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar

    [56]

    Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar

    [57]

    Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar

    [58]

    Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar

    [59]

    Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新. 聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性. 物理学报, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [3] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [4] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [5] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [6] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [11] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [12] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
计量
  • 文章访问数:  11239
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2020-12-14
  • 上网日期:  2021-05-27
  • 刊出日期:  2021-06-05

/

返回文章
返回