-
近年来有机-无机杂化钙钛矿太阳能电池(perovskite solar cells, PSCs)因具有光电转换效率高、制备工艺简单等优点而受到广泛关注. 空穴传输层(hole transport layer, HTL)的选择及其优化对器件的性能至关重要. 氧化镍(NiOx) HTL具有化学稳定性好、空穴迁移率高、制备方法简单等特点, 在PSCs中得到了广泛应用. 本综述从NiOx HTL在平面PSCs中的应用入手, 系统介绍了通过掺杂和表面修饰法实现对NiOx HTL薄膜的结构和光电性能的改性, 并从能级匹配、空穴迁移率及结晶性等多个角度详细评述了NiOx改性对PSCs光电转换效率、填充因子、开路电压、短路电流和稳定性的影响规律, 最后对于NiOx平面PSCs的未来进行了展望.In recent years, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted wide attention due to their high photoelectric conversion efficiency and simple preparation process. Hole transport layer (HTL) is one of the most critical components in PSCs. As a kind of inorganic HTL material, nickel oxide (NiOx) has been widely used in perovskite solar cells because of its excellent advantages, such as outstanding chemical stability, high carrier mobility, simple methods for its preparation, etc. In this paper, the applications of NiOx HTL in planar PSCs are systematically summarized from the aspects of the improvment of its structure and photoelectric properties by doping and interface modification. The reasons for affecting the device performances, i.e. fill factor, open-circuit voltage, short-circuit current, photoelectric conversion efficiency, and stability are emphatically analyzed from several aspects, such as energy level matching, hole mobility and crystallinity. In addition, the future development directions of the planar PSCs are prospected.
-
Keywords:
- perovskite solar cells /
- interface engineering /
- inorganic hole transport layer /
- nickel oxide
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar
[2] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar
[3] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar
[4] Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html
[5] Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar
[6] Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar
[7] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar
[8] Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar
[9] Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar
[10] Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar
[11] Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar
[12] Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar
[13] Zuo C, Ding L 2015 Small 11 5528Google Scholar
[14] Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[15] Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar
[16] Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar
[17] Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar
[18] Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[19] Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar
[20] Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar
[21] Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar
[22] Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar
[23] Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar
[24] Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar
[25] Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar
[26] Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar
[27] Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar
[28] Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar
[29] Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar
[30] Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar
[31] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar
[32] Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar
[33] Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar
[34] Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar
[35] Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar
[36] Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar
[37] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[38] Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar
[39] Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar
[40] Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar
[41] Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar
[42] Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar
[43] Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar
[44] Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar
[45] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar
[46] Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar
[47] He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar
[48] Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar
[49] Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar
[50] Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar
[51] Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar
[52] Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar
[53] Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar
[54] Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar
[55] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar
[56] Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar
[57] Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar
[58] Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar
[59] Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar
-
图 3 (a) NiOx和Cu:NiOx薄膜的紫外光电子能谱[33]; (b) 基于NiOx或Cs: NiOx单空穴器件的J-V曲线, 器件结构为FTO/ NiOx 或 Cs:NiOx/MoO3/Ag[37]; (c) 不同HTLs的PSCs能级图; (d) 倒置平面PSCs的结构[38]; (e) F6TCNNQ掺杂分子的化学结构及其与NiOx的能级排列[41]; (f) NiOx与TCNQ, F2TCNQ, F4TCNQ和F2HCNQ的电荷转移和能级分布示意图[17]
Fig. 3. (a) Ultraviolet photoelectron spectra of NiOx and Cu:NiOx films[33]; (b) J-V curves of hole only devices with NiOx or Cs:NiOx hole extraction layers, the device structure is FTO/ NiOx or Cs:NiOx/MoO3/Ag[37]; (c) energy-level diagram of the various layers in the PSCs exhibiting the transfer of photoinduced holes; (d) structural illustration of the inverted planar PSCs[38]; (e) band alignment of NiOx and molecular dopants of F6TCNNQ and the chemical structure[41]; (f) schematic of charge transfer and energy level distribution of NiOx, TCNQ, F2TCNQ, F4TCNQ, and F2HCNQ[17].
图 4 (a) 钙钛矿前驱体在NiOx薄膜以及甘油处理后NiOx膜上的接触角[46]; (b) 三种氨基酸的三维分子模型[47]; (c) NiOx和NiOx/FDA 薄膜上钙钛矿层的SEM图像; (d) NiOx和NiOx/FDA 薄膜上钙钛矿层的X射线衍射图[48]; (e) 基于TPV实验计算的具有不同HTLs器件的载流子复合寿命与光强度关系图[49]; (f) 在10 kHz下KCl修饰前后NiOx基PSCs的Mott-Schottky图, 以及基于TPV实验计算的KCl修饰前后NiOx基PSCs的陷阱态密度谱[51]
Fig. 4. (a) Contact angles of the solvents of perovskite precursor solution on NiOx: pristine film and with glycerol treatment[46]; (b) molecular 3D models and formula of three amino acids[47]; (c) SEM images of the perovskite layer on NiOx and NiOx/FDA films; (d) XRD patterns of the perovskite layer on NiOx and NiOx/FDA films[48]; (e) recombination lifetime versus light intensity plots of complete cells having various HTLs, calculated by TPV experiments[49]; (f) Mott–Schottky plots for the CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs at 10 kHz and trap density of states (DOS) spectra for CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs[51]
表 1 基于掺杂NiOx薄膜的PSCs的性能
Table 1. Performances of the PSCs based on doped NiOx films.
器件结构 电压
Voc/V电流
Jsc/(mA·cm–2)填充因子FF 光电转换效率PCE/% 掺杂/方法 文献 ITO/F2HCNQ:NiOx/PMMA/CsMAFA/PCBM/BCP/Ag 1.14 23.44 0.83 22.13 F2HCNQ:NiOx spin-coating [17] ITO/F6TCNNQ:NiOx/CsFAMA/
PCBM/ZrAcac/Ag1.12 23.18 0.80 20.86 F6TCNNQ/Spin coating [41] ITO/Cu:NiOx/CH3NH3PbI3/C60/BCP/Ag 1.12 22.28 0.81 20.26 Cu:NiOx NPs/Spin coating [42] ITO/Li:Co NiOx/MA1yFAyPbI3xClx/
PCBM/BCP/Ag1.09 23.80 0.78 20.10 Li:Co/Spin-coating [40] ITO/Sr:NiOx/CH3NH3PbI3/C60/BCP/Ag 1.14 22.66 0.76 19.49 Sr:NiO/Spin-coating [38] ITO/NiOx:AGQDs/CsFAMA/PCBM/BCP/Ag 1.05 22.30 0.83 19.40 NiOx:AGQDs/Spin-coating [43] FTO/Cs:NiOx/MAPbI3/PCBM/ZrAcac/Ag 1.12 21.77 0.79 19.35 Cs/Spin coating sol [37] ITO/NiMgO/CH3NH3PbI3/PCBM/ZnMgO/Al 1.08 21.30 0.80 18.50 Mg/Sputtering [44] FTO/NIR-Co:NiOx/MAPbI3/PC61BM/PEI/Ag 1.09 20.46 0.80 17.77 Co/Spin-coating [35] FTO/NiMgLiO/MAPbI3/PCBM/Ti(Nb)Ox/Ag 1.07 20.21 0.75 16.20 Li-Mg/Spray pyrolysis [45] 表 2 基于改性NiOx薄膜的PSCs的性能
Table 2. Performances of the PSCs based on modified NiOx films
器件结构 电压
Voc/V电流
Jsc/(mA·cm–2)填充因子FF 光电转换效率PCE/% 改性/方法 文献 ITO/NiOx/KCl/CsFAMA/PCBM/ZrAcac/Ag 1.15 22.89 0.80 20.96 KCl or NaCl/
Spin-coating[51] ITO/NiOx/PFN-P2/CsFAMA/C60/BCP/Ag 1.13 23.33 0.78 20.50 PFN-P2 [53] FTO/NiOx/SDBS/CH3NH3PbI3/
PCBM/BCP/Ag1.12 22.94 0.78 20.15 SDBS/Spin-coating [54] ITO/NiOx/NH4F/CH3NH3PbI3/C60/BCP/Ag 1.09 22.45 0.77 18.94 NH4F/Spin-coating [50] ITO/NiOx/TPI-6MEO/MAPbI3/
PCBM/BCP/Ag0.98 23.31 0.81 18.42 TPI-6MEO/
Spin-coating[49] ITO/NiOx/SAM/Perovskite/
PCBM/Bis-C60/Ag1.11 21.70 0.76 18.40 Benzoic acid modification [55] ITO/NiOx/FDA/CH3NH3PbI3/PCBM/AgAl 1.04 22.55 0.76 17.87 FDA modification [48] FTO/NiOx/PTAA/FA1–xMAxPb
(I3–yBry)/PCBM/Au1.06 21.54 0.75 17.10 PTAA/Sol–gel [56] -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar
[2] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar
[3] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar
[4] Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html
[5] Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar
[6] Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar
[7] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar
[8] Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar
[9] Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar
[10] Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar
[11] Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar
[12] Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar
[13] Zuo C, Ding L 2015 Small 11 5528Google Scholar
[14] Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[15] Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar
[16] Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar
[17] Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar
[18] Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[19] Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar
[20] Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar
[21] Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar
[22] Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar
[23] Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar
[24] Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar
[25] Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar
[26] Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar
[27] Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar
[28] Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar
[29] Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar
[30] Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar
[31] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar
[32] Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar
[33] Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar
[34] Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar
[35] Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar
[36] Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar
[37] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[38] Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar
[39] Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar
[40] Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar
[41] Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar
[42] Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar
[43] Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar
[44] Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar
[45] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar
[46] Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar
[47] He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar
[48] Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar
[49] Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar
[50] Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar
[51] Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar
[52] Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar
[53] Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar
[54] Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar
[55] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar
[56] Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar
[57] Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar
[58] Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar
[59] Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar
计量
- 文章访问数: 17149
- PDF下载量: 732
- 被引次数: 0