Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz frequency coding metasurface

Li Shao-He Li Jiu-Sheng Sun Jian-Zhong

Citation:

Terahertz frequency coding metasurface

Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong
PDF
HTML
Get Citation
  • Metasurface is an artificial structure composed of sub-wavelength units which can realize the arbitrary control of electromagnetic wave energy by coding and arranging metasurface. Unlike the previous coding metasurface with a fixed phase difference of the neighbor coding unit cells, the frequency coding metasurface possesses the main feature that it has the linear change phase difference and different phase sensitivities in the whole working frequency band of the digital unit cells. And it can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. In this paper, the frequency coding metasurfaces are designed by using four herringbone unit cells with the same shape and different sizes. They have the same phase response at the initial frequency and the different phase sensitivities throughout the frequency band. To describe the frequency coding characteristics of the unit cells, the digital numbers "0" and "1" are used to represent the low phase sensitivity and high phase sensitivity, respectively. Using the frequency digital coding, it can control the electromagnetic wave energy radiations by a single digital coding metasurface without changing the spatial coding pattern. By the combination of the spatial coding and frequency coding, It can manipulate the electromagnetic wave energy radiations more flexibly. We demonstrate 1-bit, 2-bit periodic frequency coding metasurfaces and 2-bit non-periodic frequency coding metasurface. They are all designed in the pre-designed coding sequence to control the electromagnetic wave energy radiations. Numerically simulated results confirm that the frequency coding metasurface can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. Additionally, the number of the backward diffusion-like scattering beam increases with the change of frequency for the 2-bit random terahertz frequency coding metasurface. It has a good dispersion effect on the main lobe energy of terahertz wave radiation. The radar cross section can be reduced effectively, and the maximum value of radar cross section reduction can reach 29 dB in the direction of θ = 0, φ = 0. It has a great application value in the terahertz wave cloaking.
      Corresponding author: Li Jiu-Sheng, jshli@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871355) and the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LY18F010016).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne P J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F,Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031Google Scholar

    [4]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 J. Appl. Phys. 115 063908Google Scholar

    [5]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk'Yanchuk B, Kuznetsov A I 2015 Laser Photon. Rev. 9 412Google Scholar

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zheng A X 2015 J. Appl. Phys. 117 044501Google Scholar

    [7]

    Zhu H F, Semperlotti F 2016 Phys. Rev. Lett. 117 034302Google Scholar

    [8]

    Wang L, Kruk S, Tang H Z, Li T, Kravchenko I, Neshev D N, Kivshar Y S 2016 Optica 3 1504Google Scholar

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [10]

    Ramli M N, Ping J S, Jamlos M F, Lago H, Aziz N M, Al-Hadi A A 2017 Appl. Phys. A 123 149Google Scholar

    [11]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442Google Scholar

    [12]

    Wan X, Shen X P, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757Google Scholar

    [13]

    Li Z L, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk'Yanchuk B, Wang Y, Zheng G X, Rho J, Qiu C W 2017A CS Nano 11 9382Google Scholar

    [14]

    Cui TJ, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [15]

    Huang C, Sun B, Pan W B, Cui J H, Wu X Y, Luo X G 2017 Sci. Rep. 7 42302Google Scholar

    [16]

    Li J S, Zhao Z J, Yao J Q 2017 Opt. Express 25 29983Google Scholar

    [17]

    Cui T J, Liu S 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [19]

    Su J X, Cui Y Y, Li Z R, Yan Q L, Che Y X, Yin H C 2018 AIP Adv. 8 035027Google Scholar

    [20]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

  • 图 1  人字形超表面单元结构 (a)单元结构三维立体图; (b)单元结构二维平面图

    Figure 1.  Herringbone metasurfaceunit structure: (a) Three-dimensional of unit structure; (b) two-simensional of unit structure.

    图 2  4种人字形超表面基本单元结构及其特性曲线 (a) A单元(L = 48 μm); (b) B单元(L = 40 μm); (c) C单元(L = 34 μm); (d) D单元(L = 20 μm); (e) 4种单元在0.4 THz到1.0 THz下的反射率; (f) 4种单元在0.4 THz到1.0 THz下的反射相位

    Figure 2.  The basic unit structure and characteristic curves of four kinds of herringbone metasurface: (a) Unit A (L = 48 μm); (b) unit B (L = 40 μm); (c) unit C (L = 34 μm); (d) unit D (L = 20 μm); (e) reflectivity of four unitsfrom 0.4 THz to 1.0 THz; (f) reflection phase of four units from 0.4 THz to 1.0 THz.

    图 3  太赫兹频率编码器 (a)以“0-0, 0-1, 0-0, 0-1”序列沿x方向排列1-bit周期太赫兹频率编码器; (b)棋盘式1-bit周期太赫兹频率编码器; (c)以“00-00, 00-01, 00-10, 00-11”序列沿x方向排列2-bit周期太赫兹频率编码器; (d) 2-bit随机太赫兹频率编码器; (e) 2-bit非周期太赫兹频率编码器

    Figure 3.  The terahertz frequency coding metasurface: (a) 1-bit periodic terahertz frequency coding metasurface arranged along x direction with “0-0, 0-1, 0-0, 0-1” sequence; (b) chessboard 1-bit periodic terahertz frequency coding metasurface; (c) 2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence; (d) 2-bit random terahertz frequency coding metasurface; (e) 2-bit non-periodic terahertz frequency coding metasurface.

    图 4  序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Figure 4.  1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence “0-0,0-1, 0-0, 0-1”: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 5  序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Figure 5.  1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence“0-0, 0-1, 0-0, 0-1”: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 7  棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Figure 7.  Chessboard 1-bit terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 6  棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Figure 6.  Chessboard 1-bit terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 8  “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Figure 8.  2-bit periodic terahertz frequency coding metasurfacearranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Three-dimensionalfar-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 11  2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时二维电场图

    Figure 11.  2-bit random terahertz frequency coding metasurface:two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 10  2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Figure 10.  2-bit random terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 9  “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Figure 9.  2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Two-dimensionalelectric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 12  2-bit太赫兹随机频率编码器和金属板在1.0 THz处的雷达散射截面分布

    Figure 12.  Radar cross section distribution of 2-bit terahertz random frequency coding metasurface and metal plate at 1.0 THz.

    图 13  2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Figure 13.  Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 14  2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Figure 14.  Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    表 1  1-bit频率编码器单元

    Table 1.  1-bit frequency terahertz coding metasurface unit.

    单元结构α0/(°)1-bit相位响应
    近似α0/(°)空域码α1/(°)·THz–1近似α1/(°)·THz–1频域码编码状态
    154160“0”–312/0.60/0.6“0”“0–0”
    158160“0”–138/0.6180/0.6“1”“0–1”
    DownLoad: CSV
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne P J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F,Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031Google Scholar

    [4]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 J. Appl. Phys. 115 063908Google Scholar

    [5]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk'Yanchuk B, Kuznetsov A I 2015 Laser Photon. Rev. 9 412Google Scholar

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zheng A X 2015 J. Appl. Phys. 117 044501Google Scholar

    [7]

    Zhu H F, Semperlotti F 2016 Phys. Rev. Lett. 117 034302Google Scholar

    [8]

    Wang L, Kruk S, Tang H Z, Li T, Kravchenko I, Neshev D N, Kivshar Y S 2016 Optica 3 1504Google Scholar

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [10]

    Ramli M N, Ping J S, Jamlos M F, Lago H, Aziz N M, Al-Hadi A A 2017 Appl. Phys. A 123 149Google Scholar

    [11]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442Google Scholar

    [12]

    Wan X, Shen X P, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757Google Scholar

    [13]

    Li Z L, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk'Yanchuk B, Wang Y, Zheng G X, Rho J, Qiu C W 2017A CS Nano 11 9382Google Scholar

    [14]

    Cui TJ, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [15]

    Huang C, Sun B, Pan W B, Cui J H, Wu X Y, Luo X G 2017 Sci. Rep. 7 42302Google Scholar

    [16]

    Li J S, Zhao Z J, Yao J Q 2017 Opt. Express 25 29983Google Scholar

    [17]

    Cui T J, Liu S 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [19]

    Su J X, Cui Y Y, Li Z R, Yan Q L, Che Y X, Yin H C 2018 AIP Adv. 8 035027Google Scholar

    [20]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

  • [1] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke. Composite phase modulated beam steering controllable reflective metasurface. Acta Physica Sinica, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Han Jun-Jie, Qian Si-Xian, Zhu Chuan-Ming, Huang Zhi-Xiang, Ren Xin-Gang, Cheng Guang-Shang. Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface. Acta Physica Sinica, 2023, 72(14): 148101. doi: 10.7498/aps.72.20230457
    [5] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [6] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [7] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [8] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [9] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [10] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [11] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [13] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [14] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [15] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [16] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [17] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [18] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [19] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] Fan Shu-Hai, He Hong-Bo, Shao Jian-Da, Fan Zheng-Xiu, Zhao Yuan-An. Method to improve absorption measurement sensitivity of thin films with surface thermal lens technique. Acta Physica Sinica, 2006, 55(2): 758-763. doi: 10.7498/aps.55.758
Metrics
  • Abstract views:  8652
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2019
  • Accepted Date:  02 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回