Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of time-varying electron density of air spark shock wave plasma jet by the method of microwave Rayleigh scattering

Wu Jin-Fang Chen Zhao-Quan Zhang Ming Zhang Huang Zhang San-Yang Feng De-Ren Zhou Yu-Ming

Citation:

Measurement of time-varying electron density of air spark shock wave plasma jet by the method of microwave Rayleigh scattering

Wu Jin-Fang, Chen Zhao-Quan, Zhang Ming, Zhang Huang, Zhang San-Yang, Feng De-Ren, Zhou Yu-Ming
PDF
HTML
Get Citation
  • It is difficult in measuring the electron density of an atmospheric air spark shock wave plasma jet, due to its variation on the time scale of sub-microseconds. In this paper, the time-varying electron density of air spark shock wave plasma jet is measured, based on the principle of microwave Rayleigh scattering. The system constant A is determined by using calibration of materials with known properties; the results show that the system constant is obtained as A = 1.04 × 105 V·Ω·m–2. According to the principle of microwave Rayleigh scattering, the electron density of the plasma jet is related to its radius and length of the plasma jet plume. Combined with the discharge image captured by ICCD camera, it is observed that the plasma jet plumes are with irregular patterns. In order to facilitate the calculation, the plasma jet plumes are replaced by cylinders with the same volume as the original shapes. Thus, the equivalent radius and length of the plasma jet plume are obtained. According to the known data, the electron density is determined to be in the order of 1020 m–3; its value increases rapidly to the peak value, and after then exponential attenuates along with time. In addition, the effect of different equivalent dimensions of the plasma jet plume on the measurement results is also discussed. It is shown that the calculation result with the time-varying equivalent radius and the time-varying equivalent length is the most effective one. In addition, the first fast peak is caused by the ionization wave of the photo ionization. The actual ionization process is that the air discharge in the cathode cavity releases a large number of high energy photons, which pass through the cathode nozzle and project into the region outside the nozzle; and then the O2 molecule in the ambient air are ionized by those high energy photons to form the plasma jet plume at the time of 1 μs.
      Corresponding author: Chen Zhao-Quan, chenzq@ahut.edu.cn
    [1]

    Akram M, Lundgren E 1996 J. Phys. 29 2129

    [2]

    Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar

    [3]

    Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246

    [4]

    El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar

    [5]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar

    [6]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [7]

    Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1

    [8]

    Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar

    [9]

    Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar

    [10]

    李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar

    [11]

    Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar

    [12]

    Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar

    [13]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [14]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar

    [15]

    Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar

    [16]

    ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar

    [17]

    Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar

    [18]

    Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar

    [19]

    Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar

    [20]

    Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar

    [21]

    Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar

    [22]

    Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar

    [23]

    Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar

    [24]

    Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar

    [25]

    Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar

    [26]

    卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar

    [27]

    周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar

    [28]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697

    [29]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [30]

    Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar

    [31]

    严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar

    Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar

    [32]

    Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [33]

    Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar

    [34]

    Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar

    [35]

    Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602

    Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602

    [37]

    Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613

    [38]

    Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar

    [39]

    陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar

    Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar

    [40]

    卢新培 2011 高电压技术 37 1416

    Lu X P 2011 High Voltage Eng. 37 1416

    [41]

    张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar

    Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar

    [42]

    Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar

    [43]

    李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696

    Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696

    [44]

    Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar

    [45]

    Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [46]

    蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047

    Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047

    [47]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar

    [48]

    Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar

    [49]

    韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar

    Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar

    [50]

    张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110

    Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110

  • 图 1  大气压空气电火花放电产生的等离子体射流 (a)大气压空气电火花放电装置的结构图; (b) 电火花放电装置照片; (c) 空气电火花激波等离子体射流照片

    Figure 1.  Plasma jet generated by atmospheric pressure air spark discharge: (a) Structure diagram of atmospheric pressure air spark discharge device; (b) installation photo of spark discharge device; (c) photo of air spark shock-wave plasma jet.

    图 2  火花放电电压波形

    Figure 2.  Spark discharge voltage waveform.

    图 3  微波瑞利散射装置 (a)实验系统图; (b)实验装置照片

    Figure 3.  Microwave Rayleigh scattering device: (a) Experimental schematic diagram; (b) photo of experimental device.

    图 4  微波瑞利散射装置的系统参数标定

    Figure 4.  Calibration on a constant of microwave Rayleigh scattering device.

    图 5  微波瑞利散射装置测定的散射信号

    Figure 5.  Scattering signal measured by microwave Rayleigh scattering device.

    图 6  空气等离子体射流的光学影像

    Figure 6.  Optical images of air plasma jet.

    图 7  空气等离子体激波射流的半径r(t)和长度l(t)

    Figure 7.  The radius r(t) and length l(t) of air plasma shock-wave jet.

    图 8  不同等效尺度下的等离子体射流的时变电子密度 (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t)

    Figure 8.  Time-varying electron density of plasma jet with the different equivalent scales: (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t).

  • [1]

    Akram M, Lundgren E 1996 J. Phys. 29 2129

    [2]

    Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar

    [3]

    Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246

    [4]

    El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar

    [5]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar

    [6]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [7]

    Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1

    [8]

    Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar

    [9]

    Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar

    [10]

    李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar

    [11]

    Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar

    [12]

    Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar

    [13]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [14]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar

    [15]

    Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar

    [16]

    ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar

    [17]

    Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar

    [18]

    Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar

    [19]

    Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar

    [20]

    Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar

    [21]

    Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar

    [22]

    Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar

    [23]

    Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar

    [24]

    Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar

    [25]

    Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar

    [26]

    卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar

    [27]

    周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar

    [28]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697

    [29]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [30]

    Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar

    [31]

    严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar

    Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar

    [32]

    Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [33]

    Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar

    [34]

    Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar

    [35]

    Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602

    Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602

    [37]

    Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613

    [38]

    Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar

    [39]

    陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar

    Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar

    [40]

    卢新培 2011 高电压技术 37 1416

    Lu X P 2011 High Voltage Eng. 37 1416

    [41]

    张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar

    Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar

    [42]

    Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar

    [43]

    李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696

    Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696

    [44]

    Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar

    [45]

    Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [46]

    蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047

    Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047

    [47]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar

    [48]

    Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar

    [49]

    韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar

    Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar

    [50]

    张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110

    Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110

  • [1] Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie. Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target. Acta Physica Sinica, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] Zhou Xin-Miao, Zhang Bo-Ya, Chen Li, Li Xing-Wen. Simulation of effect of metal particles on breakdown process of three-electrode gas spark switches. Acta Physica Sinica, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [3] Cao Shu-Li, Li Shou-Zhe, Niu Yu-Long, Li Rong-Yi, Zhu Hai-Long. Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure. Acta Physica Sinica, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [4] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [5] Tu Jing-Yi, Chen She, Wang Feng. Influence of photoionization rates on positive streamer branching in atmospheric air. Acta Physica Sinica, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [6] Li Han-Wei, Sun An-Bang, Zhang Xing, Yao Cong-Wei, Chang Zheng-Shi, Zhang Guan-Jun. Three-dimensional PIC/MCC numerical study on the initial process of streamer discharge in a needle-plate electrode in atmospheric air. Acta Physica Sinica, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [7] Yang Wen-Bin, Zhou Jiang-Ning, Li Bin-Cheng, Xing Ting-Wen. Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma. Acta Physica Sinica, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [9] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [10] Ren Xiu-Yun, Tian Zhao-Shuo, Yang Min, Sun Lan-Jun, Fu Shi-You. Theoretical study on measuring underwater temperature based on coherent Rayleigh scattering. Acta Physica Sinica, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [11] Zhao Gao, Xiong Yu-Qing, Ma Chao, Liu Zhong-Wei, Chen Qiang. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, 2014, 63(23): 235202. doi: 10.7498/aps.63.235202
    [12] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [14] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [15] Hao Zuo-Qiang, Yu Jin, Zhang Jie, Yuan Xiao-Hui, Zheng Zhi-Yuan, Yang Hui, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [16] Shou Qian, Zhang Hai-Chao, Deng Li, Liu Ye-Xin, Lin Wei-Zhu. Interference of Rayleigh scattering and four-wave mixing. Acta Physica Sinica, 2003, 52(4): 1019-1022. doi: 10.7498/aps.52.1019
    [17] Wang Chen, Gu Yuan, Fu Si-Zu, Zhou Guan-Lin, Wu Jiang, Wang Wei, Sun Yu-Qin, Dong Jia-Xin, Sun Jin-Ren, Wang Rui-Rong, Ni Yuan-Long, Wan Bing-Gen, Huang Guang-Long, Zhang Guo-Peng, Lin Zun-Qi, Wang Shi-Ji. . Acta Physica Sinica, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [18] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [19] WANG LONG, LUO YAO-QUAN, LI ZAN-LIANG, WANG WEN-SHU, YANG SI-ZE, LI WEN-LAI, QI XIA-ZHI, ZHAO HUA. MICROWAVE PREIONIZATION PLASMA IN A TOKAMAK. Acta Physica Sinica, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
    [20] CHENG CHENG, SUN WEI, TANG CHUAN-SHUN. TIME RESOLVED ELECTRON TEMPERATURE AND DENSITY IN A PULSED LASER PLASMA. Acta Physica Sinica, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
Metrics
  • Abstract views:  8377
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2019
  • Accepted Date:  23 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回