Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Most Cited

Spin excitation spectra of iron pnictide superconductors
LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian
2025, 74 (1): 017401. doi: 10.7498/aps.74.20241534
Abstract +
Spin fluctuations are often considered the most likely candidates for superconducting electron pairing media in unconventional superconductors. The iron-based superconductors provide a wide range of opportunities for studying the mechanism of unconventional superconductivity, as they have many systems with different structures and rich magnetisms. Taking the iron pnictide superconductors for example, this review summarizes the inelastic neutron scattering results of the spin excitation spectrum of iron-based superconductors, especially for their common features.Firstly, we introduce the direct connection between the low-energy spin excitations and superconductivity, which is so called the neutron spin resonance mode. This mode widely exists in the superconducting states of all iron-based superconductors, where the resonance energy ER is linearly proportional to the critical temperature Tc: ER = 4.9kBTc, and it has a universal c-axis preferred characteristic. The in-plane dispersion of spin resonance mode is not limited by the superconducting energy gap, which is in contrast to the traditional spin exciton model. The out-of plane dispersion of spin resonance mode is determined by the Fe-As interplanar distance, indicating that the three-dimensional spin correlation effect cannot be ignored, which may be the key to clarifying the role of spin fluctuations in superconductivity.Secondly, we summarize the energy dispersion, intensity distribution, and total fluctuating moment for high energy spin excitations. Although the Heisenberg model can roughly describe the similar dispersions in different systems based on the anisotropic in-plane nearest neighbor effective exchange couplings and the similar second nearest neighbor effective exchange coupling, the correlated Hubbard model based on itinerant magnetism can more accurately describe the spin wave behavior after degeneracy, thus the spin excitations are more likely to be understood from the perspective of itinerant magnetism. The spin excitation intensity varies greatly with energy in different systems, indicating a competitive relationship between itinerant and localized magnetic interactions. However, the total fluctuating moments are generally the same, indicating that the effective spin S = 1/2. The spin excitation bandwidth is in a range of 100–200 meV, probably is correlated with the height of As away from the Fe-Fe plane.Finally, we make a comprehensive comparison of the spin excitations in iron-based superconductors and copper oxide superconductors. The spin excitation spectra of iron-based superconductors have much richer physics than cuprates, due to the complex physics of multiple orbitals, Fermi surfaces, and energy gaps. These phenomena lead to the diversity of spin excitations, especially the prominent three-dimensional spin correlation effect. This indicates that interlayer pairing and intra layer pairing driven by spin interactions are equally important and must be fully considered in microscopic theories of high-Tc superconductivity.
Neutron scattering studies of complex lattice dynamics in energy materials
REN Qingyong, WANG Jianli, LI Bing, MA Jie, TONG Xin
2025, 74 (1): 012801. doi: 10.7498/aps.74.20241178
Abstract +
Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials. Many excellent energy materials have complex multiple-sublattice structures, with intricate lattice dynamics, and the underlying mechanisms are difficult to understand. Neutron scattering technologies, which are known for their high energy and momentum resolution, are powerful tools for simultaneously characterizing material structure and complex lattice dynamics. In recent years, neutron scattering techniques have made significant contributions to the study of energy materials, shedding light on their physical mechanisms. Starting from the basic properties of neutrons and double differential scattering cross sections, this review paper provides a detailed introduction to the working principles, spectrometer structures, and functions of several neutron scattering techniques commonly used in energy materials research, including neutron diffraction and neutron total scattering, which characterize material structures, and quasi-elastic neutron scattering and inelastic neutron scattering, which characterize lattice dynamics. Then, this review paper presents significant research progress in the field of energy materials utilizing neutron scattering as a primary characterization method.1) In the case of Ag8SnSe6 superionic thermoelectric materials, single crystal inelastic neutron scattering experiments have revealed that the “liquid-like phonon model” is not the primary contributor to ultra-low lattice thermal conductivity. Instead, extreme phonon anharmonic scattering is identified as a key factor based on the special temperature dependence of phonon linewidth.2) Analysis of quasi-elastic and inelastic neutron scattering spectra reveals the changes in the correlation between framework and Ag+ sublattices during the superionic phase transition of Ag8SnSe6 compounds. Further investigations using neutron diffraction and molecular dynamics simulations reveal a new mechanism of superionic phase transition and ion diffusion, primarily governed by weakly bonded Se atoms.3) Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration, and the strengthening of phonon anharmonicity with temperature rising can decouple this interaction and induce plastic phase transition. This phenomenon results in a significant configuration entropy change, showing its potential applications in barocaloric refrigeration.4) In the CsPbBr3 perovskite photovoltaic materials, inelastic neutron scattering uncovers low-energy phonon damping of the [PbBr6] sublattice, influencing electron-phonon coupling and the band edge electronic state. This special anharmonic vibration of the [PbBr6] sublattice prolongs the lifetime of hot carriers, affecting the material's electronic properties.5) In MnCoGe magnetic refrigeration materials, in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in changing crystal structural stability and magnetic interactions. This process triggers a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure, expanding our understanding of magnetic phase transition regulation.These examples underscore the interdependence between lattice dynamics and other degrees of freedom in energy conversion and storage materials, such as sublattices, charge, and spin. Through these typical examples, this review paper can provide a reference for further exploring and understanding the energy materials and lattice dynamics.
Instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in Hall thruster
YANG Sanxiang, ZHAO Yide, DAI Peng, LI Jianpeng, GU Zengjie, MENG Wei, GENG Hai, GUO Ning, JIA Yanhui, YANG Juntai
2025, 74 (2): 025201. doi: 10.7498/aps.74.20241330
Abstract +
The free energy contained in electron drift, electron collision, and plasma density gradient, temperature, magnetic field gradient can trigger off the instabilities with different frequencies and wavelengths in hall thrusters. The instabilities will destroy the stable discharge of plasma, affecting the matching degree between the thruster and the power processing unit, and reducing the performance of the thruster. Based on this, the instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in the hall thruster are studied by using dispersion relation derived from the fluid model. The results are shown below. 1) When in the model includes the effects of electron inertia, collision between electrons and neutral atoms, and electron drift, instability can be excited at any axial position from the near anode region to the plume region of the thruster. With the increase of azimuthal wavenumber ${k_y} = 2\pi /\lambda $, the lower-hybrid mode excited by electron collision transitions into the ion sound mode, where ${k_y} = 2{\text{π }}/\lambda $, $\lambda $being the wave length. The real frequency ${\omega _{\text{r}}}$ corresponding to the maximum growth rate ${\gamma _{\max }}$ slightly decreases with collision frequency increasing for ${k_y} = 10{\text{ }}{{\text{ m}}^{ - 1}}$. However, the maximum real frequency and real frequency ${\omega _{\text{r}}}$ corresponding to the maximum growth rate ${k_y} = 300{{\text{ m}}^{ - 1}}$ will not change with collision frequency for ${k_y} = 300{\text{ }}{{\text{ m}}^{ - 1}}$. Independent of the value of ${k_y}$, the growth rate of mode triggered off by electron collision increases with collision frequency increasing. 2) The plasma density gradient effect plays a dominant role in triggering off instabilities when the electron inertia, electron-neutral collisions and plasma density gradient are simultaneously included in the model. The dynamic behavior of the model does not change with the increase of ${k_y}$, but the eigenvalue of the model increases with the ${k_y}$ increasing. Since the sign of anti-drift frequency induced by the plasma density gradient is changed, the mode eigenvalues have the opposite change trend on both sides of point ${\kappa _{\text{N}}}$. When the sign of ${\omega _r}$ and ${\omega _r}$ are opposite, the density gradient effect has a stabilization effect on instability excitation (${\kappa _{\text{N}}} > 0$). When the sign of ${\omega _{\text{s}}}$ and ${\omega _{\text{r}}}$ are the same, the density gradient effect enhances the excitation of instability (${\kappa _{\text{N}}} < 0$). 3) If the plasma density gradient, magnetic field gradient, electron inertia and electron-neutral collisions are included in the dispersion, the mode eigenvalue relies on the electron drift frequency, and the diamagnetic drift frequency induced by the density gradient and magnetic field gradient. When the density gradient effect and the magnetic field gradient effect are considered, there is a stable window in the discharge channel. However, if the electron inertia and electron-neutral collisions are also included, the stable window will disappear.
Finite element prediction and device performance of piezoelectric fiber composite based smart sensor
GAO Yukun, ZHAO Jie, ZHOU Jingjing, ZHOU Jing
2025, 74 (5): 057701. doi: 10.7498/aps.74.20241379
Abstract +
Macro fiber composite (MFC) is extensively utilized in aviation, aerospace, civilian, and military domains due to its high piezoelectricity, flexibility, and minimal loss. Nevertheless, existing research on MFC sensors has focused on material applications, with a conspicuous lack of systematic investigation into the simulation and modeling of MFC sensor devices. In this study, three models, namely, a representative volume element (RVE) model, a direct model, and a Hybrid model are established to analyze the finite element models of MFC, covering the scales from micro to macro. On the one hand, the equivalent RVE model contributes to an understanding of the internal electric field distribution in MFC, thereby establishing a theoretical foundation for force-electric coupling. On the other hand, the application of the direct model and hybrid model accords with the boundary conditions in MFC applications, which lays a theoretical foundation for the stress sensing and resonance sensing mechanisms of MFC. These models constitute effective tools for predicting the sensing performance of MFC smart element sensors. The simulation outcomes indicate that resonant sensors exhibit significantly superior performance compared with patch sensors. Under the conditions where the excitation acceleration is 5 m/s² and the cantilever substrate length is 80 mm, the simulated resonant frequency of the MFC resonant sensor is 67 Hz, with an output voltage of 4.17 V. Experimental results confirm these findings. It is reported that the resonant frequency is 74 Hz and the output voltage is 3.59 V for the MFC sensor. The remarkable consistency between the simulation results and experimental data of the MFC sensor deserves to be emphasized. In addition, the MFC sensor shows excellent sensing sensitivity at low frequencies, with a sensitivity of 7.35 V/g. Obviously, MFC shows remarkable sensing characteristics at low-frequency resonance. The three finite element models established in this work can well predict the sensing performance of MFC sensors, thus ensuring reliable prediction of the performance of such sensors.