Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inverse orbital Hall effect in light metal Cr films

CHEN Feng WANG Ping ZHANG Zhijia HE Kang FENG Zheng ZHANG Delin

Citation:

Inverse orbital Hall effect in light metal Cr films

CHEN Feng, WANG Ping, ZHANG Zhijia, HE Kang, FENG Zheng, ZHANG Delin
cstr: 32037.14.aps.74.20250346
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Orbitronic devices have aroused considerable interest due to their unique advantage of being independent of strong spin-orbit coupling. Light metal chromium (Cr) with high orbital Hall conductivity has significant potential for application in orbit-spintronic devices. In this study, we present experimental verification of the inverse orbital Hall effect (IOHE) in Cr thin films and systematically investigate the underlying physical mechanisms of orbital-to-charge current conversion. The Cr/Ni and Pt/Ni heterostructures are fabricated on Al2O3 substrates via magnetron sputtering. Terahertz time-domain spectroscopy is employed to measure the terahertz emission signal. The Cr/Ni heterostructure exhibits the same positive terahertz polarity as the ISHE-dominant Pt/Ni heterostructure, despite the Cr layer owing negative spin Hall angle, which confirms the IOHE of Cr/Ni heterostructure. In the Cr/Ni heterostructures, femtosecond laser excitation generates spin current in the ferromagnetic Ni layer, which is converted into orbital current via its spin-orbit coupling. This orbital current propagates into the Cr layer where it is transformed into charge current through the IOHE. Furthermore, the increase of the Cr thickness (2–40 nm) weakens the terahertz emission of Cr/Ni heterostructures due to enhanced optical absorption of Cr layers reducing spin current generation in Ni layers. However, the optimization of Ni thickness (3–10 nm) significantly enhances the terahertz emission by improving the spin-to-orbital current conversion efficiency. This work provides experimental evidence for IOHE in Cr films and demonstrates the crucial role of ferromagnetic layer engineering in spin-to-orbital current conversion efficiency, providing innovative perspectives for designing and optimizing the performance of orbitronic devices.
      Corresponding author: WANG Ping, pingwang@tiangong.edu.cn ; ZHANG Zhijia, zhangzhijia@tiangong.edu.cn ; HE Kang, hekang_mtrc@caep.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204003), the National Natural Science Foundation of China (Grant Nos. 52271240, 62027807), the Key R&D Program of Cangzhou City, China (Grant No. 222104008), and the Hebei Natural Science Foundation, China (Grant No. E2023110012).
    [1]

    Choi Y G, Jo D, Ko K H, Go D, Kim K H, Park H G, Kim C, Min B C, Choi G M, Lee H W 2023 Nature 619 52Google Scholar

    [2]

    Go D, Jo D, Kim C, Lee H W 2018 Phys. Rev. Lett. 121 086602Google Scholar

    [3]

    Jo D, Go D, Lee H W 2018 Phys. Rev. B 98 214405Google Scholar

    [4]

    Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037Google Scholar

    [5]

    Go D, Jo D, Kim K W, Lee S, Kang M G, Park B G, Blügel S, Lee H W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701Google Scholar

    [6]

    Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405Google Scholar

    [7]

    Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429Google Scholar

    [8]

    Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703Google Scholar

    [9]

    Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745Google Scholar

    [10]

    Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113Google Scholar

    [11]

    Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601Google Scholar

    [12]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117Google Scholar

    [13]

    Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001Google Scholar

    [14]

    Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32Google Scholar

    [15]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [16]

    Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001Google Scholar

    [17]

    Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901Google Scholar

    [18]

    Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J, Park B G 2021 Commun. Phys. 4 234Google Scholar

    [19]

    Guo Y, Zhang Y, Lü W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408Google Scholar

    [20]

    Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502Google Scholar

    [21]

    Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901Google Scholar

    [22]

    Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274Google Scholar

    [23]

    Go D, Lee H W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435Google Scholar

    [24]

    Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O, Lee K J 2021 Nat. Commun. 12 6710Google Scholar

    [25]

    Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702Google Scholar

    [26]

    Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28Google Scholar

    [27]

    Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132Google Scholar

    [28]

    Kumar S, Kumar S 2023 Nat. Commun. 14 8185Google Scholar

    [29]

    Xu Y, Zhang F, Fert A, Jaffres H Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043Google Scholar

    [30]

    Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568Google Scholar

    [31]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031Google Scholar

    [32]

    Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554Google Scholar

  • 图 1  (a) Al2O3/Cr (40 nm), (b) Al2O3/Cr (10 nm)/Ni (5 nm)和(c) Al2O3/Cr (40 nm)/Ni (5 nm)的原子力显微镜图像

    Figure 1.  AFM images of (a) Al2O3/Cr (40 nm), (b) Al2O3/Cr (10 nm)/Ni (5 nm) and (c) Al2O3/Cr (40 nm)/Ni (5 nm) samples

    图 2  (a)—(e) Cr (2—40 nm)/Ni (5 nm)结构的太赫兹信号

    Figure 2.  (a)–(e) The THz signals of the Cr (2–40 nm)/Ni (5 nm) structures.

    图 3  (a) Pt (1 nm)/Ni (5 nm)和(b) Pt (3 nm)/Ni (5 nm)结构的太赫兹信号

    Figure 3.  The THz signals of the (a) Pt (1 nm)/Ni (5 nm) and (b) Pt (3 nm)/Ni (5 nm) structures

    图 4  (a) Cr (10 nm)/Ni (3 nm), (b) Cr (10 nm)/Ni (5 nm)和(c) Cr (10 nm)/Ni (10 nm)结构的太赫兹信号

    Figure 4.  The THz signals of the (a) Cr (10 nm)/Ni (3 nm) structures, (b) Cr (10 nm)/Ni (5 nm) and (c) Cr (10 nm)/Ni (10 nm) structures

    图 5  (a) Cr/Ni结构中IOHE机制; (b) Pt/Ni结构中ISHE机制

    Figure 5.  (a) Mechanism of IOHE in Cr/Ni structures; (b) mechanism of ISHE in Pt/Ni structures.

  • [1]

    Choi Y G, Jo D, Ko K H, Go D, Kim K H, Park H G, Kim C, Min B C, Choi G M, Lee H W 2023 Nature 619 52Google Scholar

    [2]

    Go D, Jo D, Kim C, Lee H W 2018 Phys. Rev. Lett. 121 086602Google Scholar

    [3]

    Jo D, Go D, Lee H W 2018 Phys. Rev. B 98 214405Google Scholar

    [4]

    Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037Google Scholar

    [5]

    Go D, Jo D, Kim K W, Lee S, Kang M G, Park B G, Blügel S, Lee H W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701Google Scholar

    [6]

    Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405Google Scholar

    [7]

    Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429Google Scholar

    [8]

    Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703Google Scholar

    [9]

    Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745Google Scholar

    [10]

    Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113Google Scholar

    [11]

    Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601Google Scholar

    [12]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117Google Scholar

    [13]

    Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001Google Scholar

    [14]

    Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32Google Scholar

    [15]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [16]

    Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001Google Scholar

    [17]

    Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901Google Scholar

    [18]

    Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J, Park B G 2021 Commun. Phys. 4 234Google Scholar

    [19]

    Guo Y, Zhang Y, Lü W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408Google Scholar

    [20]

    Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502Google Scholar

    [21]

    Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901Google Scholar

    [22]

    Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274Google Scholar

    [23]

    Go D, Lee H W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435Google Scholar

    [24]

    Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O, Lee K J 2021 Nat. Commun. 12 6710Google Scholar

    [25]

    Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702Google Scholar

    [26]

    Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28Google Scholar

    [27]

    Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132Google Scholar

    [28]

    Kumar S, Kumar S 2023 Nat. Commun. 14 8185Google Scholar

    [29]

    Xu Y, Zhang F, Fert A, Jaffres H Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043Google Scholar

    [30]

    Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568Google Scholar

    [31]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031Google Scholar

    [32]

    Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554Google Scholar

  • [1] WANG Xiaoyun, FAN Huichuan, CHEN Xiaoshuang, WANG Lin. Terahertz detection simulation of plasma waves in monolayer MoS2 field-effect transistor. Acta Physica Sinica, 2025, 74(15): . doi: 10.7498/aps.74.20250517
    [2] LU Wenqiang, YI Yingting, SONG Qianju, ZHOU Zigang, YI Yougen, ZENG Qingdong, YI Zao. Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires. Acta Physica Sinica, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [3] Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang. Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides. Acta Physica Sinica, 2024, 73(11): 114203. doi: 10.7498/aps.73.20240279
    [4] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [6] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [7] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [8] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [9] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [10] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [11] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [13] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [14] Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang. Establishment of THz dispersion model of metals based on Kramers-Kronig relation. Acta Physica Sinica, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [15] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [16] Bao Di, Shen Xiao-Peng, Cui Tie-Jun. Progress of terahertz metamaterials. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [17] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [18] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [19] Liu Jian-Feng, Zhou Qing-Li, Shi Yu-Lei, Li Lei, Zhao Dong-Mei, Zhang Cun-Lin. The effect of substrate on terahertz transmission properties through metal subwavelength dual-ring structure. Acta Physica Sinica, 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [20] Wang Yue, He Xun-Jun, Wu Yu-Ming, Wu Qun, Mei Jin-Shuo, Li Long-Wei, Yang Fu-Xing, Zhao Tuo, Li Le-Wei. Properties of terahertz surface plasmon ploaritons on carbon nanotube film with periodic grating. Acta Physica Sinica, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
Metrics
  • Abstract views:  360
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2025
  • Accepted Date:  17 April 2025
  • Available Online:  06 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回