Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on the relativistic runaway electron avalanche in thundercloud with CORSIKA

ZHOU Tian ZHOU Xunxiu HE Huihai YANG Ci GUO Kejun CHEN Xuejian WEI Rumeng JI Seyuan HUANG Daihui

Citation:

Simulation study on the relativistic runaway electron avalanche in thundercloud with CORSIKA

ZHOU Tian, ZHOU Xunxiu, HE Huihai, YANG Ci, GUO Kejun, CHEN Xuejian, WEI Rumeng, JI Seyuan, HUANG Daihui
cstr: 32037.14.aps.74.20250580
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Terrestrial Gamma-ray flashes (TGFs) originating from the Earth’s atmosphere, accompanied by thunderstorms and lightning activity, are one of the hot spots in the interdisciplinary of cosmic ray and atmospheric physics. Over the years, satellite experiments have detected thousands of upward TGFs during thunderstorms, while ground-based experiments have observed some downward TGFs. Nowadays, it is widely believed that TGFs accompanying lightning leaders observed by satellite-based and ground-based experiments involve relativistic runaway electron avalanche (RREA) production. Due to triggering the relativistic runaway electron avalanche (RREA) process needing a very large electric field strength and region, it is difficult to study the RREA process through ground-based experiments. In this paper, CORSIKA 7.7410 software package, combined with a vertically uniform electric field model, is adopted to simulate the intensity and energy distribution of RREA electrons in thundercloud with different electric field strengths induced by seed electrons and the secondary electrons in extensive air shower (EAS) from vertical protons with different primary energies. The results show that the number of RREA electrons increases exponentially with the thickness of the thunderclouds increasing, and also increases exponentially with the electric field strength rising. After passing through the atmosphere with an electric field of –3000 V/cm and a thickness of 800 m, the number of secondary electrons in RREA process increases by approximately 3×104 times. The characteristic length of avalanche (λ) decreases as the electric field strength increases. When the electric field is –1600 V/cm and –3000 V/cm, the λ is approximately ~282 m and ~69 m, respectively. The energy spectrum of RREA electrons gradually softens with the increase of layer thickness and strength of electric field, and their average energy increases with the increase of electric field strength, when the thundercloud thickness exceeds 400 m, the mean energy of RREA electrons gradually stabilizes. When secondary particles pass through a thundercloud with an electric field strength of –3000 V/cm and a thickness of 800 m, the mean energy of RREA electrons is approximately 11.7 MeV. Through the Monte Carlo simulations, the RREA process, which is difficult to observe directly in the atmosphere, is successfully simulated. The simulation results provide important information for studying the characteristics of TGF source regions, offer clues for detecting downward TGF in ground-based experiments, and contribute to the research on the triggering mechanism of lightning in the atmosphere. In addition, our simulation results are expected to elucidate the relationship between TGF and lightning activity, promoting interdisciplinary research in the fields of atmospheric physics and cosmic ray physics.
      Corresponding author: ZHOU Xunxiu, zhouxx@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375102, U2031101).
    [1]

    黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉 2021 物理学报 70 199301Google Scholar

    Huang Z H, Zhou X X, Huang D H, Jia H Y, Chen S Z, Ma X H, Liu D, Axikegu, Zhao B, Chen L, Wang P H 2021 Acta Phys. Sin. 70 199301Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [4]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804Google Scholar

    [5]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [6]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463Google Scholar

    [7]

    吕凡超, 张义军, 陆高鹏 2023 中国科学: 地球科学 53 421Google Scholar

    Lü F C, Zhang Y J, Lu G P 2023 Sci. China-Earth Sci. 53 421Google Scholar

    [8]

    Inan U S, Reising S C, Fishman G J, Horack J M 1996 Geophys. Res. Lett. 23 1017Google Scholar

    [9]

    Fishman G J, Bhat P N, Mallozzi R, Horack J M, Koshut T, Kouveliotou C, Pendleton G N, Meegan C A, Wilson R B, Paciesas W S, Goodman S, Christian H 1994 Science 264 1313Google Scholar

    [10]

    Briggs M S, Fishman G J, Connaughton V, Bhat P N, Paciesas W S, Preece R D, Wilson-Hodge C, Chaplin V L, Kippen R M, Kienlin A V, Meegan C A, Bissaldi E, Dwyer J R, Smith D M, Holzworth R H, Grove J E, Chekhtman A 2010 J. Geophys. Res. 115 A07323Google Scholar

    [11]

    Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, et al. 2010 J. Geophys. Res. 115 A00E13Google Scholar

    [12]

    The Insight-HXMT team 2020 Sci. China-Phys. Mech. Astron. 63 249502Google Scholar

    [13]

    Chen C, Xiao S, Xiong S L, Yu N, Wen X Y, Gong K, Li X Q, Li C Y, Hou D J, Yang X T, Zhao Z J, Zhu Y X, Zhang D L, An Z H, Zhao X Y, Xu Y P, Wang Y S 2021 Exp. Astron. 52 45Google Scholar

    [14]

    Dwyer J R, Rassoul H K, Al-Dayeh M, Caraway L, Wright B, Chrest A, Uman M A, Rakov V A, Rambo K J, Jordan D M, Jerauld J, Smyth C 2004 Geophys. Res. Lett. 31 L05119Google Scholar

    [15]

    Hare B M, Uman M A, Dwyer J R, Joradn D M, Blggerstaff M L, Caicedo J A, Carvalho F L, Wilkes R A, Kotovsky D A, Gamerota W R, Pilkey J T, Ngin T K, Moore R C, Rasoule H K, Cummer S A, Grove J E, Nag A, Betten D P, Bozarth A 2016 J. Geophys. Res. Atmos. 121 6511Google Scholar

    [16]

    Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makihima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H, GROWTH Collaboration 2017 Nature 551 481Google Scholar

    [17]

    Abbasi R U, Abu-Zayyad T, Allen M, Barcikowski E, Belz J W, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [18]

    Wada Y, Enoto T, Nakazawa K, Furuta Y, Yuasa T, Nakamura Y, Morimoto T, Matsumoto T, Makishima K, Tsuchiya H 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [19]

    Balz J W, Krehbiel P R, Remington J, Stanley M A, Abbasi R U, LeVon R, Rison W, Rodeheffer D, Abu-Zayyad T, Allen M, et al. 2020 J. Geophys. Res. Atmos. 125 e2019JD031940Google Scholar

    [20]

    郄秀书, 王俊芳 2010 地球科学进展 25 893Google Scholar

    Qie X S, Wang J F 2010 Adv. Earth Sci. 25 893Google Scholar

    [21]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055Google Scholar

    [22]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [23]

    Skeltved A B, Ostgaard N, Carlson B, Gjesteland T, Celestin S 2014 J. Geophys. Res. 119 9174Google Scholar

    [24]

    李小强, 周红召, 蒋如斌, 李鹏, 宋立军, 李英男, 刘伟, 郑毅 2018 核电子学与探测技术 38 0360Google Scholar

    Li X Q, Zhou H Z, Jiang R B, Li P, Song L J, Li Y N, Li W, Zheng Y 2018 Nucl. Electron. Detect. Technol. 38 0360Google Scholar

    [25]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karube, 6019, https://www.ikp.kit.edu/corsika/70.php

    [26]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [27]

    Dwyer J R, Smith D M, Cummer S A 2012 Space Sci. Rev. 173 133Google Scholar

    [28]

    Babich L P, Donskoy E N, Il'Kaev R I, Kutsyk I M, Roussel-Dupre R A 2004 Plasma Phys. Rep. 30 616Google Scholar

  • 图 1  种子电子(100 MeV)在不同大气电场中的簇射过程

    Figure 1.  Cascade process of seed electrons (100 MeV) in different electric fields.

    图 2  在–3000 V/cm电场下, 不同原初能量种子电子产生RREA电子的能量分布

    Figure 2.  Energy distributions of RREA electrons induced by seed electron for different primary energies in –3000 V/cm.

    图 3  种子电子产生RREA电子的平均能量随电场区垂直尺度(a)和电场强度(b)的变化关系

    Figure 3.  Mean energy of RREA electrons induced by seed electron as a function of the layer thickness (a) and strength (b) of the electric field.

    图 4  不同原初能量质子簇射的次级电子数目随雷暴云内电场区垂直尺度的变化

    Figure 4.  Number of secondary electrons induced by protons as a function of the thickness of the electric field layer for different primary energies.

    图 5  雪崩距离常数$ \lambda $与电场强度的关系

    Figure 5.  Avalanche length $ \lambda $ as a function of electric field strength.

    图 6  不同原初能量质子簇射的次级电子数目随雷暴电场的变化

    Figure 6.  Number of secondary electrons induced by protons as a function of the electric field strength for different primary energies.

    图 7  不同原初能量下$ {\text{ln(}}{N_{{\text{re}}}}/{N_0}) $与雪崩电场倍数$ \delta $的关系

    Figure 7.  $ {\text{ln}}({N_{{\text{re}}}}/{N_0}) $ as a function of different values of $ \delta $ for different primary energies.

    图 8  原初质子(10 TeV)簇射的次级电子在不同电场强度下的能量分布

    Figure 8.  Energy distribution of secondary electrons induced by protons (10 TeV) with respect to electric field strength.

    图 9  原初质子(10 TeV)簇射的次级电子在不同雷暴云厚度下的能量分布

    Figure 9.  Energy distribution of secondary electrons induced by protons (10 TeV) with respect to thickness of the electric field layer.

    图 10  次级电子平均能量随雷暴云内电场区的垂直尺度(a)和雷暴电场的变化(b)

    Figure 10.  Mean energy of secondary electrons as a function of the layer thickness (a) and strength (b) of the electric field.

  • [1]

    黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉 2021 物理学报 70 199301Google Scholar

    Huang Z H, Zhou X X, Huang D H, Jia H Y, Chen S Z, Ma X H, Liu D, Axikegu, Zhao B, Chen L, Wang P H 2021 Acta Phys. Sin. 70 199301Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [4]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804Google Scholar

    [5]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [6]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463Google Scholar

    [7]

    吕凡超, 张义军, 陆高鹏 2023 中国科学: 地球科学 53 421Google Scholar

    Lü F C, Zhang Y J, Lu G P 2023 Sci. China-Earth Sci. 53 421Google Scholar

    [8]

    Inan U S, Reising S C, Fishman G J, Horack J M 1996 Geophys. Res. Lett. 23 1017Google Scholar

    [9]

    Fishman G J, Bhat P N, Mallozzi R, Horack J M, Koshut T, Kouveliotou C, Pendleton G N, Meegan C A, Wilson R B, Paciesas W S, Goodman S, Christian H 1994 Science 264 1313Google Scholar

    [10]

    Briggs M S, Fishman G J, Connaughton V, Bhat P N, Paciesas W S, Preece R D, Wilson-Hodge C, Chaplin V L, Kippen R M, Kienlin A V, Meegan C A, Bissaldi E, Dwyer J R, Smith D M, Holzworth R H, Grove J E, Chekhtman A 2010 J. Geophys. Res. 115 A07323Google Scholar

    [11]

    Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, et al. 2010 J. Geophys. Res. 115 A00E13Google Scholar

    [12]

    The Insight-HXMT team 2020 Sci. China-Phys. Mech. Astron. 63 249502Google Scholar

    [13]

    Chen C, Xiao S, Xiong S L, Yu N, Wen X Y, Gong K, Li X Q, Li C Y, Hou D J, Yang X T, Zhao Z J, Zhu Y X, Zhang D L, An Z H, Zhao X Y, Xu Y P, Wang Y S 2021 Exp. Astron. 52 45Google Scholar

    [14]

    Dwyer J R, Rassoul H K, Al-Dayeh M, Caraway L, Wright B, Chrest A, Uman M A, Rakov V A, Rambo K J, Jordan D M, Jerauld J, Smyth C 2004 Geophys. Res. Lett. 31 L05119Google Scholar

    [15]

    Hare B M, Uman M A, Dwyer J R, Joradn D M, Blggerstaff M L, Caicedo J A, Carvalho F L, Wilkes R A, Kotovsky D A, Gamerota W R, Pilkey J T, Ngin T K, Moore R C, Rasoule H K, Cummer S A, Grove J E, Nag A, Betten D P, Bozarth A 2016 J. Geophys. Res. Atmos. 121 6511Google Scholar

    [16]

    Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makihima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H, GROWTH Collaboration 2017 Nature 551 481Google Scholar

    [17]

    Abbasi R U, Abu-Zayyad T, Allen M, Barcikowski E, Belz J W, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [18]

    Wada Y, Enoto T, Nakazawa K, Furuta Y, Yuasa T, Nakamura Y, Morimoto T, Matsumoto T, Makishima K, Tsuchiya H 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [19]

    Balz J W, Krehbiel P R, Remington J, Stanley M A, Abbasi R U, LeVon R, Rison W, Rodeheffer D, Abu-Zayyad T, Allen M, et al. 2020 J. Geophys. Res. Atmos. 125 e2019JD031940Google Scholar

    [20]

    郄秀书, 王俊芳 2010 地球科学进展 25 893Google Scholar

    Qie X S, Wang J F 2010 Adv. Earth Sci. 25 893Google Scholar

    [21]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055Google Scholar

    [22]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [23]

    Skeltved A B, Ostgaard N, Carlson B, Gjesteland T, Celestin S 2014 J. Geophys. Res. 119 9174Google Scholar

    [24]

    李小强, 周红召, 蒋如斌, 李鹏, 宋立军, 李英男, 刘伟, 郑毅 2018 核电子学与探测技术 38 0360Google Scholar

    Li X Q, Zhou H Z, Jiang R B, Li P, Song L J, Li Y N, Li W, Zheng Y 2018 Nucl. Electron. Detect. Technol. 38 0360Google Scholar

    [25]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karube, 6019, https://www.ikp.kit.edu/corsika/70.php

    [26]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [27]

    Dwyer J R, Smith D M, Cummer S A 2012 Space Sci. Rev. 173 133Google Scholar

    [28]

    Babich L P, Donskoy E N, Il'Kaev R I, Kutsyk I M, Roussel-Dupre R A 2004 Plasma Phys. Rep. 30 616Google Scholar

  • [1] XING Tian, LIU Shuhuan, WANG Xuan, WANG Chao, ZHOU Junye, ZHANG Ximin, CHEN Wei. Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures. Acta Physica Sinica, 2025, 74(16): 162401. doi: 10.7498/aps.74.20250162
    [2] WANG Dexin, ZHANG Rui, YU Dekang, NA Hui, YAO Zhanghao, WU Linghe, ZHANG Suyalatu, LIANG Tairan, HUANG Meirong, WANG Zhilong, BAI Yu, HUANG Yongshun, YANG Xue, ZHANG Jiawen, LIU Mengdi, MA Qiang, YU Jing, JI Xiuyan, YU Yiliqi, SHAO Xuepeng. Observation and research on cosmic ray muons and solar modulation effect based on plastic scintillator detector. Acta Physica Sinica, 2025, 74(5): 059201. doi: 10.7498/aps.74.20241704
    [3] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [4] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [5] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [6] Su Ning, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping. Muon radiography simulation for underground palace of Qinshihuang Mausoleum. Acta Physica Sinica, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [7] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [8] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [9] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [10] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [11] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [12] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [13] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [14] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [15] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [16] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  350
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2025
  • Accepted Date:  19 July 2025
  • Available Online:  14 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回