Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of defect and defect passivation in perovskite solar cells

Wang Cheng-Lin Zhang Zuo-Lin Zhu Yun-Fei Zhao Xue-Fan Song Hong-Wei Chen Cong

Citation:

Progress of defect and defect passivation in perovskite solar cells

Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong
PDF
HTML
Get Citation
  • Research on perovskite solar cells is prevalent because of their excellent photovoltaic performance. Most of the perovskite films are prepared by polycrystalline perovskite films and low-temperature solution method, thus inevitably creating a high density of defects, including point defects and extended defects. These defects can also be divided into two types: shallow-level defects and deep-level defects. The multiple types of defects are the main cause of nonradiative recombination, which will limit the enhancement of photovoltaic properties and stability of solar cell devices. In this paper, we review the latest advances in defect passivation and describe in detail the mechanisms of different methods to passivate defects at the surface and interface of perovskite films to reduce nonradiative recombination. We also summarize the research results about the defect passivation to reduce the deep energy level traps by Lewis acid and base, anion and cation, and the results about the conversion of defects into wide band gap materials as well. The effects of various strategies to modulate the mechanism of passivation of perovskite surface/interface defects are also elaborated. In addition, we discuss the intrinsic link between crystal defects and device stability, and provide an outlook on the feasibility of defect passivation strategies in future research.
      Corresponding author: Song Hong-Wei, songhw@jlu.edu.cn
    [1]

    Grätzel M 2003 J. Photochem. Photobiol. C 4 145Google Scholar

    [2]

    Günes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324Google Scholar

    [3]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Pazos-Outon L M, Xiao T P, Yablonovitch E 2018 J. Phys. Chem. Lett. 9 1703Google Scholar

    [5]

    Stranks S D 2017 ACS Energy Lett. 2 1515Google Scholar

    [6]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nature Energy 3 682Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [10]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [11]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [14]

    National Renewable Energy Laboratory, Best research cell efficiencies, www. nrel. gov/pv/cell-efficiency. html (2022)

    [15]

    Chen J, Park N G 2019 Adv. Mater. 31 1803019Google Scholar

    [16]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar

    [17]

    Holzhey P, Saliba M 2018 J. Mater. Chem. A 6 21794Google Scholar

    [18]

    Han T H, Tan S, Xue J L, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [19]

    Ono L K, Liu S, Qi Y 2020 Angew. Chem. Int. Ed. 59 6676Google Scholar

    [20]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [21]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar

    [22]

    Tress W, Marinova N, Inganas O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar

    [23]

    Abate A 2017 Joule 1 659Google Scholar

    [24]

    Kieslich G, Sun S, Cheetham A 2014 Chem. Sci. 5 4712Google Scholar

    [25]

    Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar

    [26]

    Rajagopal A, Yao K, Jen A K Y 2018 Adv. Mater. 30 1800455Google Scholar

    [27]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [28]

    Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar

    [29]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [30]

    Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar

    [31]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [32]

    Yin W J, Shi T, Yan Y 2014 Applied Physics Letters 104 063903

    [33]

    Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J 2016 ACS Energy Lett. 1 360Google Scholar

    [34]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [35]

    Yuan Y, Li T, Wang Q, Xing J, Gruverman A, Huang J 2017 Sci. Adv. 3 e1602164Google Scholar

    [36]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [37]

    Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G 2016 Adv. Energy Mater. 6 1502246Google Scholar

    [38]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [39]

    Chen B, Rudd P N, Yang S, Yuan Y, Huang J 2019 Chem. Soc. Rev. 48 3842Google Scholar

    [40]

    Aberle A G 2001 Solar Energy Mater. 65 239Google Scholar

    [41]

    Hoex B, Schmidt J, Pohl P, Van de Sanden M, Kessels W 2008 J. Appl. Phys. 104 044903Google Scholar

    [42]

    Aberle A G 2000 Prog. Photovoltaics Res. Appl. 8 473Google Scholar

    [43]

    Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [44]

    Ross R T J T J o C P 1967 J. Chem. Phys. 46 4590Google Scholar

    [45]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 1Google Scholar

    [46]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [47]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 1Google Scholar

    [48]

    Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J 2017 Adv. Mater. 29 1700607Google Scholar

    [49]

    Wang J, Datta K, Weijtens C H L, Wienk M M, Janssen R A J 2019 Adv. Func. Mater. 29 1905883Google Scholar

    [50]

    Haddon R C 1993 Science 261 1545Google Scholar

    [51]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J 2015 Nat. Commun. 6 7081Google Scholar

    [52]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [53]

    Yang Z, Dou J, Kou S, Dang J, Ji Y, Yang G, Wu W Q, Kuang D B, Wang M 2020 Adv. Funct. Mater. 30 1910710Google Scholar

    [54]

    Lee J W, Kim H S, Park N G 2016 Acc Chem. Res. 49 311Google Scholar

    [55]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [56]

    Zuo L J, Guo H X, deQuilettes D W, Jariwala S, De Marco N, Dong S Q, DeBlock R, Ginger D S, Dunn B, Wang M K, Yang Y 2017 Sci. Adv. 3 e1700106Google Scholar

    [57]

    Liu L, Fang W H, Long R, Prezhdo O V 2018 J. Phys. Chem. Lett. 9 1164Google Scholar

    [58]

    Hou Y, Zhou Z R, Wen T Y, Qiao H W, Lin Z Q, Ge B, Yang H G 2019 Nanoscale Horiz. 4 208Google Scholar

    [59]

    Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A, Wei H, Wang H, Shen H 2018 Adv. Mater. 30 1705393Google Scholar

    [60]

    You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar

    [61]

    Zhu L, Zhang X, Li M, Shang X, Lei K, Zhang B, Chen C, Zheng S, Song H, Chen J 2021 Adv. Energy Mater. 11 2100529Google Scholar

    [62]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [63]

    Wang X, Sun Y, Wang Y, Ai X C, Zhang J P 2022 J. Phys. Chem. Lett. 13 1571Google Scholar

    [64]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nature Energy 2 1Google Scholar

    [65]

    Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry J J, Zakeeruddin S M, Zhu K, Gratzel M 2018 Energy Environ. Sci. 11 3480Google Scholar

    [66]

    Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q 2018 Adv. Mater. 30 1803428Google Scholar

    [67]

    Bi C, Zheng X, Chen B, Wei H, Huang J 2017 ACS Energy Lett. 2 1400Google Scholar

    [68]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [69]

    Zhang W, Liu H, Qi X, Yu Y, Zhou Y, Xia Y, Cui J, Shi Y, Chen R, Wang H L 2022 Adv. Sci. e2106054

    [70]

    Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G, Stewart C, Hu J, Zhang X, Luther J M, Duhm S, Ma W 2019 Adv. Energy Mater. 9 1900721Google Scholar

    [71]

    Zhang Y, Liu X, Li P, Duan Y, Hu X, Li F, Song Y 2019 Nano Energy 56 733Google Scholar

    [72]

    Jung M, Shin T J, Seo J, Kim G, Seok S I 2018 Energy Environ. Sci. 11 2188Google Scholar

    [73]

    Zhao T, Chueh C C, Chen Q, Rajagopal A, Jen A K Y J A E L 2016 ACS Energy Lett. 1 757Google Scholar

    [74]

    Jokar E, Chien C H, Fathi A, Rameez M, Chang Y H, Diau E W G 2018 Energy Environ. Sci. 11 2353Google Scholar

    [75]

    Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H, Huang J S 2017 ACS Energy Lett. 2 1571Google Scholar

    [76]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nature Energy 2 17135Google Scholar

    [77]

    Lee D, Yun J S, Kim J, Soufiani A M, Chen S, Cho Y, Deng X F, Seidel J, Lim S, Huang S J, Ho-Baillie A W Y 2018 ACS Energy Lett. 3 647Google Scholar

    [78]

    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M 2017 Nat. Commun. 8 1Google Scholar

    [79]

    Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar

    [80]

    Luo Y, Gamliel S, Nijem S, Aharon S, Holt M, Stripe B, Rose V, Bertoni M I, Etgar L, Fenning D P 2016 Chem. Mater. 28 6536Google Scholar

    [81]

    Nan G J, Zhang X, Abdi-Jalebi M, Andaji-Garmaroudi Z, Stranks S D, Lu G, Beljonne D 2018 Adv. Energy Mater. 8 1702754Google Scholar

    [82]

    Chen Q, Zhou H, Fang Y, Stieg A Z, Song T B, Wang H H, Xu X, Liu Y, Lu S, You J 2015 Nat. Commun. 6 7269Google Scholar

    [83]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D 2016 Nature Energy 1 1Google Scholar

    [84]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [85]

    Zhang J, Wu S, Liu T, Zhu Z, Jen A K Y 2019 Adv. Funct. Mater. 29 1808833Google Scholar

    [86]

    Chen J, Kim S G, Park N G 2018 Adv. Mater. 30 1801948Google Scholar

    [87]

    Jokar E, Chuang H S, Kuan C H, Wu H P, Hou C H, Shyue J J, Wei-Guang Diau E 2021 J. Phys. Chem. Lett. 12 10106Google Scholar

    [88]

    Yang Y M, Chen X, Liu S, Zhu H, Wang W, Kuang C, Liu X 2021 J. Phys. Chem. C 125 12560Google Scholar

    [89]

    Sun Y, Peng J, Chen Y, Yao Y, Liang Z 2017 Sci. Rep. 7 46193Google Scholar

    [90]

    Yang S, Liu W, Zuo L, Zhang X, Ye T, Chen J, Li C Z, Wu G, Chen H 2016 J. Mater. Chem. A 4 9430Google Scholar

    [91]

    Kim M K, Jeon T, Park H I, Lee J M, Nam S A, Kim S O 2016 CrystEngComm 18 6090Google Scholar

    [92]

    Han Q, Bai Y, Liu J, Du K-z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [93]

    Zhang X, Wu G, Fu W, Qin M, Yang W, Yan J, Zhang Z, Lu X, Chen H 2018 Adv. Energy Mater. 8 1702498Google Scholar

    [94]

    Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar

    [95]

    Chen J, Rong Y, Mei A, Xiong Y, Liu T, Sheng Y, Jiang P, Hong L, Guan Y, Zhu X, Hou X, Duan M, Zhao J, Li X, Han H 2016 Adv. Energy Mater. 6 1502009Google Scholar

    [96]

    Yang L, Ma X, Shang X, Gao D, Wang C, Li M, Chen C, Zhang B, Xu S, Zheng S, Song H 2021 Solar RRL 5 2100352Google Scholar

    [97]

    Bi H, Liu B, He D, Bai L, Wang W, Zang Z, Chen J 2021 Chem. Eng. J. 418

    [98]

    Wang Z, Wu T, Xiao L, Qin P, Yu X, Ma L, Xiong L, Li H, Chen X, Wang Z, Wu T, Xiao M L, Qin P, Yu D X, Ma D L, Xiong D L, Li D H, Chen X 2021 J. Power Sources 488 229451Google Scholar

    [99]

    Wu Q, Zhou W, Liu Q, Zhou P, Chen T, Lu Y, Qiao Q, Yang S 2016 ACS Appl. Mater. Interfaces 8 34464Google Scholar

    [100]

    Goh S, Jang G, Ma S, Park J, Ban H, Lee C U, Lee J, Moon J 2021 ACS Sustainable Chem. Eng. 9 16730Google Scholar

    [101]

    Zhang C, Wang H, Li H, Zhuang Q, Gong C, Hu X, Cai W, Zhao S, Chen J, Zang Z 2021 J. Energy Chem. 63 452Google Scholar

    [102]

    Wang K, Ma S, Xue X, Li T, Sha S, Ren X, Zhang J, Lu H, Ma J, Guo S, Liu Y, Feng J, Najar A, Liu S F 2022 Adv. Sci. e2105103Google Scholar

    [103]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [104]

    Lin Y, Bai Y, Fang Y J, Chen Z L, Yang S, Zheng X P, Tang S, Liu Y, Zhao J J, Huang J S 2018 J. Phys. Chem. Lett. 9 654Google Scholar

    [105]

    Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Müller-Buschbaum P, Docampo P 2016 ACS Nano 10 5999Google Scholar

    [106]

    Ma X, Yang L, Shang X, Li M, Gao D, Wu C, Zheng S, Zhang B, Chen J, Chen C, Song H 2021 Chem. Eng. J. 426 130685Google Scholar

    [107]

    Chen C, Li F, Zhu L, Shen Z, Weng Y, Lou Q, Tan F, Yue G, Huang Q, Wang M 2020 Nano Energy 68 104313Google Scholar

    [108]

    Kim H, Lee J W, Han G R, Kim S K, Oh J H 2020 Adv. Funct. Mater. 31 2008801Google Scholar

    [109]

    Cai S, Dai J, Shao Z, Rothmann M U, Jia Y, Gao C, Hao M, Pang S, Wang P, Lau S P, Zhu K, Berry J J, Herz L M, Zeng X C, Zhou Y 2022 J. Am. Chem. Soc. 144 1910Google Scholar

    [110]

    Zhang Y, Wang Y, Yang X, Zhao L, Su R, Wu J, Luo D, Li S, Chen P, Yu M, Gong Q, Zhu R 2022 Adv. Mater. 34 2107420Google Scholar

  • 图 1  (a)三维钙钛矿结构示意图[25]; (b)双钙钛矿结构示意图, 其中两种二价金属M2+(Ge2+, Sn2+, Pb2+等)被单价M+ (Na+, K+, Rb+, Cu+, Ag+等)和三价的金属M3+ (Sb3+, Bi3+等)组合取代[23]; (c)二维钙钛矿结构示意图[25]; (d)正置型PSCs结构示意图; (e)倒置型PSCs结构示意图

    Figure 1.  (a) Schematic illustration of 3D perovskite structure; (b) schematic showing the perovskite structure with two divalent metals (M2+: Ge2+, Sn2+, Pb2+) replaced by a combination of monovalent (M+: Na+, K+, Rb+, Cu+, Ag+) and trivalent (M3+: Sb3+, Bi3+) metals; (c) schematic illustration of 2D perovskite structure; (d) schematic illustration of normal planar; (e) schematic illustration of inverted planar PSCs.

    图 2  缺陷类型 (a)完美晶体结构; (b)空位缺陷;(c)间隙缺陷; (d)反位缺陷; (e)反位杂质缺陷; (f)间隙杂质缺陷

    Figure 2.  Types of defects: (a) Perfect crystal structure; (b) vacancy defects; (c) interstitial defects; (d) antisite defects; (e) antisite impurity defects; (f) interstitial impurity defects.

    图 3  缺陷钝化机理图, 钙钛矿薄膜中的缺陷及其通过离子键、配位键和转换为宽带隙材料的钝化, 可以通过缺陷钝化抑制晶界处的离子迁移[39]

    Figure 3.  Schematic illustration of defect passivation mechanism: Imperfections in perovskite films and their passivation by ionic bonding, coordinate bonding, and conversion to wide bandgap materials. Suppression of ion migration at GBs can be achieved by passivation[39].

    图 4  (a) 具有PCBM层的器件结构[47]; (b) 通过热导纳光谱获得的陷阱态密度 (tDOS)[47]; (c) 钙钛矿薄膜和不同ETL衬底的能带示意图[49]; (d)混合溶液的紫外(UV)-可见光吸收光谱图显示PCBM和钙钛矿离子之间的相互作用[51]; (e)卤化物(X)通过碘五氟苯在过氧化物表面的卤素键络合而产生的静电屏蔽示图[52]; (f)通过低配位卤化物和空穴之间的静电相互作用捕获电荷[52]

    Figure 4.  (a) Device structure with PCBM layer; (b) trap density of states (tDOS) obtained by thermal conductivity spectroscopy; (c) schematic diagram of the energy bands of perovskite films and different ETL substrates; (d) the ultraviolet (UV)-visible absorption spectra of the mixed solutions show the interaction between PCBM and perovskite ions; (e) illustration of the electrostatic screening of the halide (X) via halogen bond complexation of Iodopentafluorobenzene on the perovskite surface; (f) charge trapping by electrostatic interactions between the undercoordinated halide and the hole.

    图 5  (a)路易斯酸(A)-碱(B)反应形成具有配位键的加合物(A·B). 路易斯碱具有氧供体(O-donor)、硫供体(S-donor)、氮供体(N-donor)[54]. (b) 有/无DMSO辅助结晶的钙钛矿薄膜SEM图[54]. (c)噻吩(或吡啶)分子通过提供电子与 Pb2+ 作用, 中和多余的正电荷[55]. (d) 11 MA钝化机理图[61]. (e)经三辛基氧膦(TOPO, 红色)、1-十八烷基硫醇(ODT, 橙色)和三苯基膦(PPh3, 蓝色)处理的薄膜的时间分辨光致发光衰减线[62]. (f)标样和经TOPO, ODT, PPh3处理薄膜的综合发光强度统计[62]

    Figure 5.  (a) Lewis acid (A)–base (B) reaction to form an adduct (A·B) with a dative bond. Lewis bases with oxygen donor (O-donor), sulfur donor (S-donor), and nitrogen donor (N-donor). (b) SEM image of perovskite films with/without DMSO-assisted crystallization. (c) The thiophene (or pyridine) molecule neutralizes the excess positive charge by providing electrons to coordinate with Pb2+. (d) Schematic illustration of 11 MA passivation mechanism. (e) Time-resolved photoluminescence decay lines of films treated with trioctylphosphine oxide (TOPO, red), 1-octadecylthiol (ODT, orange), and triphenylphosphine (PPh3, blue). (f) The integrated luminescence intensity statistics of the control samples and the films treated with TOPO, ODT and PPh3.

    图 6  (a) 钾离子含量增加的 KI 钝化钙钛矿薄膜的 PLQE图[68]; (b) 薄膜横截面示意图, 显示在过量卤化物的情况下卤化物空位调控, 其中多余的卤化物通过与钾络合在晶界和表面形成良性化合物而被固定[68]; (c) 草酸锌钝化机理图[69]

    Figure 6.  (a) PLQE of KI passivated perovskite film with increased potassium ion content; (b) schematic cross-section of the film showing halide vacancy modulation in the presence of excess halide, where the excess halide is immobilized by complexation with potassium to form benign compounds at grain boundaries and surfaces; (c) schematic illustration of the passivation mechanism of zinc oxalate.

    图 7  (a) 掺入不同浓度的NH4BF4(001)和(012)晶面的放大XRD图谱[85]; (b)原始钙钛矿薄膜SEM图像[84]; (c)掺入SCN离子后钙钛矿薄膜的SEM图像[84]; (d) I和PF${}_6^- $之间的离子交换反应形成的上层FA0.88Cs0.12PbI3–x(PF6)x钙钛矿薄膜的制备过程示意图[86] ; (e)原始钙钛矿薄膜SEM图像[86]; (f)用1 mg/ml的FAPF6后处理的钙钛矿SEM图像[86]

    Figure 7.  (a) XRD patterns of (FAPbI3)0.83(MAPbBr3)0.17 with different molar ratio of NH4BF4; (b) SEM image of control perovskite films; (c) SEM images of the perovskite films after doping with SCN ions; (d) schematic illustration of preparation process of upper layer perovskite film FA0.88Cs0.12PbI3–x(PF6)x formed via ion exchange reaction between I and PF${}_6^- $; (e) SEM image of the control perovskite film; (f) SEM image of perovskite post-treated with 1 mg/ml of FAPF6.

    图 8  (a)两性离子液体功能添加剂材料的化学结构[96]; (b)两步法制备多晶体钙钛矿薄膜的工艺[96]; (c)两性离子液体功能添加剂材料改善太阳能电池性能和稳定性的机理图[96]; (d)有无组合钝化策略晶体生长示意图[102]

    Figure 8.  (a) Chemical structure of ZIL; (b) two-step process for the preparation of polycrystalline perovskite films; (c) mechanistic diagram of ZIL for improving the performance and stability of solar cells; (d) schematic diagram of crystal growth with and without combined passivation strategy.

    图 9  通过I型对齐减少载流子复合. (a)—(c) PbI2钝化: (a) SEM示意图[103]; (b) 结构示意图[103]; (c) MAPbI3薄膜的能带排列, PbI2包裹钙钛矿颗粒[103]. (d) 分层/3D钙钛矿异质结构示意图[76]

    Figure 9.  Reduction of carrier recombination by type-I alignment. (a)–(c) PbI2 passivation: (a) SEM, (b) schematic illustration, and (c) band alignment of MAPbI3 film with PbI2 wrapping the perovskite grain. (d) Schematic illustration of the layered/3D perovskite heterostructure.

    图 10  (a) 硫酸甲胺的分子结构图[106]; (b)引入硫酸甲胺调节钙钛矿吸光层的湿度稳定性[106]; (c) MS钝化机理图[106]; (d) CH3NH3PbI3/PbSO4(PbO)4界面间键合作用[107]; (e)CH3NH3PbI3/PbSO4(PbO)4薄膜中的空穴和电子波函数分布[107]

    Figure 10.  (a) Molecular structure of methylamine sulfate; (b) modulation of the humidity stability of the perovskite absorbing layer by methylamine sulfate; (c) mechanism diagram of methylamine sulfate passivation;(d) CH3NH3PbI3/PbSO4(PbO)4 interfacial bonding interaction; (e) the hole and electron wave function distributions in the CH3NH3PbI3/ PbSO4(PbO)4 film.

    图 11  未来调控PSCs中晶体缺陷的可行性策略 (a)多功能协同钝化策略机理图[108]; (b)使用STEM-HAADF表征金属卤化物钙钛矿的精细原子结构[109]; (c)对钙钛矿粉末进行预处理而后再溶解制备出低缺陷密度钙钛矿薄膜[110]

    Figure 11.  Potential optimization strategies of PSCs: (a) Schematic diagram of the multifunctional synergistic passivation strategy; (b) characterization of the fine atomic structure of metal halide perovskite by using STEM-HAADF; (c) pre-treatment of perovskite powder followed by dissolution to prepare low defect density perovskite film.

    表 1  基于SCN钝化的钙钛矿薄膜的PSCs的光伏参数

    Table 1.  Photovoltaic parameters of PSCs with SCN passivated of perovskite films.

    DeviceJSC/
    (mA·cm–2)
    (C/T)
    VOC/V
    (C/T)
    FF(C/T)效率(C/T)Ref.
    ITO/PEDOT:PSS/FA0.8GA0.2SnI3/PHSCN/C60/BCP/Ag21.1/21.90.645/0.8176.3/7610.6/13.5[87]
    ITO/PEDOT:PSS/FA0.55MA0.45Sn0.55Pb0.45I3(SnF2 and Pb(SCN)2)/C60/BCP/Ag11.4/28.90.54/0.7638.6/82.32.4/18.1[88]
    ITO/PEDOT:PSS/FA0.7MA0.2Cs0.1Pb(I5/6Br1/6)3(Pb(SCN)2)/
    PCBM/Bphen/Al
    6.98/18.211.10/1.0671.87/72.975.52/14.09[89]
    FTO/TiO2/FAPbI3(NH4SCN)/Spiro-OMeTAD/MoO3/Ag17.52/17.880.74/0.9346.83/68.755.94/11.44[90]
    ITO/PEDOT:PSS/MAPbI3(Pb(SCN)2)/PCBM/Ca/Al9.49/15.410.83/0.8172.93/79.696.08/9.91[91]
    FTO/TiO2/MAPbI3(MASCN)/Spiro-OMeTAD/Au8.78/22.290.638/1.06436.48/76.832.04/18.22[92]
    ITO/SnO2/MA0.6FA0.4PbIxBr1–x(Pb(SCN)2)/Spiro-OMeTAD/Ag21.86/23.161.03/1.1275.76/75.2617.13/19.64[84]
    ITO/PEDOT:PSS/(PEA)2(MA)4Pb6I16(NH4SCN)/PC61BM/BCP/Ag0.93/15.011.02/1.1159/630.56/11.01[93]
    ITO/PEDOT:PSS/(BA)2(MA)2Pb3I10(NH4SCN)/PC61BM/BCP/Ag3.16/12.790.93/0.9743/551.31/6.89[94]
    DownLoad: CSV

    表 2  基于BF4或PF6钝化的钙钛矿薄膜的钙钛矿太阳能电池的光伏参数

    Table 2.  Photovoltaic parameters of PSCs with BF4 or PF6 passivated of perovskite films.

    DeviceJSC/
    (mA·cm–2
    (C/T)
    VOC/V
    (C/T)
    FF(C/T)效率(C/T)Ref.
    FTO/TiO2/MApbI3(MABF4)/ZrO4/Carbon16.92/18.150.914/0.9570.68/0.7610.54/13.24[95]
    ITO/SnO2/(FAPbI3)0.83(MAPbBr)0.17(NH4BF4)/ Spiro-OMeTAD/MoO3/Ag23.39/23.381.12/1.150.67/0.7517.55/20.16[85]
    ITO/SnO2/(FAPbI3)1–x(MAPbBr3)x(4FBBF4) /Spiro-OMeTAD/Ag24.00/24.851.130/1.1620.76/0.7820.69/22.52[96]
    FTO/bl-TiO2/mp-TiO2/FA0.88Cs0.12PbI3/(FAPF6)/Spiro-OMeTAD/Au23.00/23.111.020/1.0450.76/0.8017.79/19.25[86]
    ITO/SnO2/KPF6/FA0.88Cs0.12PbI3/Spiro-OMeTAD/Au22.38/22/831.100/1.1450. 80/0.8219.66/21.39[97]
    FTO/SnO2 QD/KPF6/(CsI)0.04(FAI)0.82(PbI2)0.86(MAPbBr3)0.14/
    Spiro-OMeTAD/Au
    21.60/23.151.072/1.120.74/0.8117.04/21.05[98]
    FTO/TiO2/[EMIM]PF6–IL/CH3NH3I/Spiro-OMeTAD/Au
    ITO/SnO2/ Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/
    Spiro-OMeTAD(LiPF6)/Au
    19.30/23.52
    22.59/23.78
    1.07/1.09
    1.06/1.10
    0.66/0.71
    0.78/0.79
    14.20/18.42
    19.04/20.78
    [99]
    [100]
    DownLoad: CSV
  • [1]

    Grätzel M 2003 J. Photochem. Photobiol. C 4 145Google Scholar

    [2]

    Günes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324Google Scholar

    [3]

    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Pazos-Outon L M, Xiao T P, Yablonovitch E 2018 J. Phys. Chem. Lett. 9 1703Google Scholar

    [5]

    Stranks S D 2017 ACS Energy Lett. 2 1515Google Scholar

    [6]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nature Energy 3 682Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [10]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [11]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [14]

    National Renewable Energy Laboratory, Best research cell efficiencies, www. nrel. gov/pv/cell-efficiency. html (2022)

    [15]

    Chen J, Park N G 2019 Adv. Mater. 31 1803019Google Scholar

    [16]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar

    [17]

    Holzhey P, Saliba M 2018 J. Mater. Chem. A 6 21794Google Scholar

    [18]

    Han T H, Tan S, Xue J L, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [19]

    Ono L K, Liu S, Qi Y 2020 Angew. Chem. Int. Ed. 59 6676Google Scholar

    [20]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [21]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar

    [22]

    Tress W, Marinova N, Inganas O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar

    [23]

    Abate A 2017 Joule 1 659Google Scholar

    [24]

    Kieslich G, Sun S, Cheetham A 2014 Chem. Sci. 5 4712Google Scholar

    [25]

    Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar

    [26]

    Rajagopal A, Yao K, Jen A K Y 2018 Adv. Mater. 30 1800455Google Scholar

    [27]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [28]

    Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar

    [29]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [30]

    Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar

    [31]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [32]

    Yin W J, Shi T, Yan Y 2014 Applied Physics Letters 104 063903

    [33]

    Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J 2016 ACS Energy Lett. 1 360Google Scholar

    [34]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [35]

    Yuan Y, Li T, Wang Q, Xing J, Gruverman A, Huang J 2017 Sci. Adv. 3 e1602164Google Scholar

    [36]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [37]

    Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G 2016 Adv. Energy Mater. 6 1502246Google Scholar

    [38]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [39]

    Chen B, Rudd P N, Yang S, Yuan Y, Huang J 2019 Chem. Soc. Rev. 48 3842Google Scholar

    [40]

    Aberle A G 2001 Solar Energy Mater. 65 239Google Scholar

    [41]

    Hoex B, Schmidt J, Pohl P, Van de Sanden M, Kessels W 2008 J. Appl. Phys. 104 044903Google Scholar

    [42]

    Aberle A G 2000 Prog. Photovoltaics Res. Appl. 8 473Google Scholar

    [43]

    Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [44]

    Ross R T J T J o C P 1967 J. Chem. Phys. 46 4590Google Scholar

    [45]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 1Google Scholar

    [46]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [47]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 1Google Scholar

    [48]

    Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J 2017 Adv. Mater. 29 1700607Google Scholar

    [49]

    Wang J, Datta K, Weijtens C H L, Wienk M M, Janssen R A J 2019 Adv. Func. Mater. 29 1905883Google Scholar

    [50]

    Haddon R C 1993 Science 261 1545Google Scholar

    [51]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J 2015 Nat. Commun. 6 7081Google Scholar

    [52]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [53]

    Yang Z, Dou J, Kou S, Dang J, Ji Y, Yang G, Wu W Q, Kuang D B, Wang M 2020 Adv. Funct. Mater. 30 1910710Google Scholar

    [54]

    Lee J W, Kim H S, Park N G 2016 Acc Chem. Res. 49 311Google Scholar

    [55]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [56]

    Zuo L J, Guo H X, deQuilettes D W, Jariwala S, De Marco N, Dong S Q, DeBlock R, Ginger D S, Dunn B, Wang M K, Yang Y 2017 Sci. Adv. 3 e1700106Google Scholar

    [57]

    Liu L, Fang W H, Long R, Prezhdo O V 2018 J. Phys. Chem. Lett. 9 1164Google Scholar

    [58]

    Hou Y, Zhou Z R, Wen T Y, Qiao H W, Lin Z Q, Ge B, Yang H G 2019 Nanoscale Horiz. 4 208Google Scholar

    [59]

    Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A, Wei H, Wang H, Shen H 2018 Adv. Mater. 30 1705393Google Scholar

    [60]

    You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar

    [61]

    Zhu L, Zhang X, Li M, Shang X, Lei K, Zhang B, Chen C, Zheng S, Song H, Chen J 2021 Adv. Energy Mater. 11 2100529Google Scholar

    [62]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [63]

    Wang X, Sun Y, Wang Y, Ai X C, Zhang J P 2022 J. Phys. Chem. Lett. 13 1571Google Scholar

    [64]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nature Energy 2 1Google Scholar

    [65]

    Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry J J, Zakeeruddin S M, Zhu K, Gratzel M 2018 Energy Environ. Sci. 11 3480Google Scholar

    [66]

    Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q 2018 Adv. Mater. 30 1803428Google Scholar

    [67]

    Bi C, Zheng X, Chen B, Wei H, Huang J 2017 ACS Energy Lett. 2 1400Google Scholar

    [68]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [69]

    Zhang W, Liu H, Qi X, Yu Y, Zhou Y, Xia Y, Cui J, Shi Y, Chen R, Wang H L 2022 Adv. Sci. e2106054

    [70]

    Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G, Stewart C, Hu J, Zhang X, Luther J M, Duhm S, Ma W 2019 Adv. Energy Mater. 9 1900721Google Scholar

    [71]

    Zhang Y, Liu X, Li P, Duan Y, Hu X, Li F, Song Y 2019 Nano Energy 56 733Google Scholar

    [72]

    Jung M, Shin T J, Seo J, Kim G, Seok S I 2018 Energy Environ. Sci. 11 2188Google Scholar

    [73]

    Zhao T, Chueh C C, Chen Q, Rajagopal A, Jen A K Y J A E L 2016 ACS Energy Lett. 1 757Google Scholar

    [74]

    Jokar E, Chien C H, Fathi A, Rameez M, Chang Y H, Diau E W G 2018 Energy Environ. Sci. 11 2353Google Scholar

    [75]

    Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H, Huang J S 2017 ACS Energy Lett. 2 1571Google Scholar

    [76]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nature Energy 2 17135Google Scholar

    [77]

    Lee D, Yun J S, Kim J, Soufiani A M, Chen S, Cho Y, Deng X F, Seidel J, Lim S, Huang S J, Ho-Baillie A W Y 2018 ACS Energy Lett. 3 647Google Scholar

    [78]

    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M 2017 Nat. Commun. 8 1Google Scholar

    [79]

    Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar

    [80]

    Luo Y, Gamliel S, Nijem S, Aharon S, Holt M, Stripe B, Rose V, Bertoni M I, Etgar L, Fenning D P 2016 Chem. Mater. 28 6536Google Scholar

    [81]

    Nan G J, Zhang X, Abdi-Jalebi M, Andaji-Garmaroudi Z, Stranks S D, Lu G, Beljonne D 2018 Adv. Energy Mater. 8 1702754Google Scholar

    [82]

    Chen Q, Zhou H, Fang Y, Stieg A Z, Song T B, Wang H H, Xu X, Liu Y, Lu S, You J 2015 Nat. Commun. 6 7269Google Scholar

    [83]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D 2016 Nature Energy 1 1Google Scholar

    [84]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [85]

    Zhang J, Wu S, Liu T, Zhu Z, Jen A K Y 2019 Adv. Funct. Mater. 29 1808833Google Scholar

    [86]

    Chen J, Kim S G, Park N G 2018 Adv. Mater. 30 1801948Google Scholar

    [87]

    Jokar E, Chuang H S, Kuan C H, Wu H P, Hou C H, Shyue J J, Wei-Guang Diau E 2021 J. Phys. Chem. Lett. 12 10106Google Scholar

    [88]

    Yang Y M, Chen X, Liu S, Zhu H, Wang W, Kuang C, Liu X 2021 J. Phys. Chem. C 125 12560Google Scholar

    [89]

    Sun Y, Peng J, Chen Y, Yao Y, Liang Z 2017 Sci. Rep. 7 46193Google Scholar

    [90]

    Yang S, Liu W, Zuo L, Zhang X, Ye T, Chen J, Li C Z, Wu G, Chen H 2016 J. Mater. Chem. A 4 9430Google Scholar

    [91]

    Kim M K, Jeon T, Park H I, Lee J M, Nam S A, Kim S O 2016 CrystEngComm 18 6090Google Scholar

    [92]

    Han Q, Bai Y, Liu J, Du K-z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [93]

    Zhang X, Wu G, Fu W, Qin M, Yang W, Yan J, Zhang Z, Lu X, Chen H 2018 Adv. Energy Mater. 8 1702498Google Scholar

    [94]

    Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar

    [95]

    Chen J, Rong Y, Mei A, Xiong Y, Liu T, Sheng Y, Jiang P, Hong L, Guan Y, Zhu X, Hou X, Duan M, Zhao J, Li X, Han H 2016 Adv. Energy Mater. 6 1502009Google Scholar

    [96]

    Yang L, Ma X, Shang X, Gao D, Wang C, Li M, Chen C, Zhang B, Xu S, Zheng S, Song H 2021 Solar RRL 5 2100352Google Scholar

    [97]

    Bi H, Liu B, He D, Bai L, Wang W, Zang Z, Chen J 2021 Chem. Eng. J. 418

    [98]

    Wang Z, Wu T, Xiao L, Qin P, Yu X, Ma L, Xiong L, Li H, Chen X, Wang Z, Wu T, Xiao M L, Qin P, Yu D X, Ma D L, Xiong D L, Li D H, Chen X 2021 J. Power Sources 488 229451Google Scholar

    [99]

    Wu Q, Zhou W, Liu Q, Zhou P, Chen T, Lu Y, Qiao Q, Yang S 2016 ACS Appl. Mater. Interfaces 8 34464Google Scholar

    [100]

    Goh S, Jang G, Ma S, Park J, Ban H, Lee C U, Lee J, Moon J 2021 ACS Sustainable Chem. Eng. 9 16730Google Scholar

    [101]

    Zhang C, Wang H, Li H, Zhuang Q, Gong C, Hu X, Cai W, Zhao S, Chen J, Zang Z 2021 J. Energy Chem. 63 452Google Scholar

    [102]

    Wang K, Ma S, Xue X, Li T, Sha S, Ren X, Zhang J, Lu H, Ma J, Guo S, Liu Y, Feng J, Najar A, Liu S F 2022 Adv. Sci. e2105103Google Scholar

    [103]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [104]

    Lin Y, Bai Y, Fang Y J, Chen Z L, Yang S, Zheng X P, Tang S, Liu Y, Zhao J J, Huang J S 2018 J. Phys. Chem. Lett. 9 654Google Scholar

    [105]

    Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Müller-Buschbaum P, Docampo P 2016 ACS Nano 10 5999Google Scholar

    [106]

    Ma X, Yang L, Shang X, Li M, Gao D, Wu C, Zheng S, Zhang B, Chen J, Chen C, Song H 2021 Chem. Eng. J. 426 130685Google Scholar

    [107]

    Chen C, Li F, Zhu L, Shen Z, Weng Y, Lou Q, Tan F, Yue G, Huang Q, Wang M 2020 Nano Energy 68 104313Google Scholar

    [108]

    Kim H, Lee J W, Han G R, Kim S K, Oh J H 2020 Adv. Funct. Mater. 31 2008801Google Scholar

    [109]

    Cai S, Dai J, Shao Z, Rothmann M U, Jia Y, Gao C, Hao M, Pang S, Wang P, Lau S P, Zhu K, Berry J J, Herz L M, Zeng X C, Zhou Y 2022 J. Am. Chem. Soc. 144 1910Google Scholar

    [110]

    Zhang Y, Wang Y, Yang X, Zhao L, Su R, Wu J, Luo D, Li S, Chen P, Yu M, Gong Q, Zhu R 2022 Adv. Mater. 34 2107420Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] Meng Jing, Gao Bo-Wen. Photovoltaic performance optimization of integrated perovskite/organic solar cells based on PM6:Y6 polymer non-fullerene system. Acta Physica Sinica, 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [10] Liu Yu-Xue, Ming Yi-Dong, Wu Cong-Cong. Properties and improvements of chlorine-doped methylamine-based perovskites. Acta Physica Sinica, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [11] Gao Jiu-Lin, Lian Ya-Jun, Yang Ye, Li Guo-Qing, Yang Xiao-Hui. High-efficiency sky blue perovskite light-emitting diodes with ammonium thiocyanate additive. Acta Physica Sinica, 2021, 70(19): 198502. doi: 10.7498/aps.70.20211046
    [12] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
Metrics
  • Abstract views:  20565
  • PDF Downloads:  1236
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2022
  • Accepted Date:  09 April 2022
  • Available Online:  01 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回