Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of ultra-low noise photodetectors in 0.1 mHz–1 Hz frequency band

SHANG Xin LI Fan MA Zhenglei HUANG Tianshi DANG Hao LI Wei YIN Wangbao TIAN Long CHEN Lirong ZHENG Yaohui

Citation:

Experimental study of ultra-low noise photodetectors in 0.1 mHz–1 Hz frequency band

SHANG Xin, LI Fan, MA Zhenglei, HUANG Tianshi, DANG Hao, LI Wei, YIN Wangbao, TIAN Long, CHEN Lirong, ZHENG Yaohui
cstr: 32037.14.aps.74.20241635
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser intensity noise suppression in the millihertz frequency band is essential for space-based gravitational wave detection to ensure the sensitivity of the interferometer. Optoelectronic feedback technology is one of the most effective methods of suppressing laser intensity noise. The noise of the photodetector that is the first-stage component in the feedback loop, directly couples into the feedback loop, thus significantly affecting the laser intensity noise. In this paper, starting from the requirement of suppressing laser intensity noise in the 0.1 mHz–1 Hz frequency band for space-based gravitational wave detection, the factors affecting the electronics of photodetectors at extremely low frequencies are analyzed in detail. Using the low dark current characteristic of photodiodes in photovoltaic mode, a zero-bias voltage scheme is adopted to reduce the dark noise of the photodiode. A transimpedance amplification circuit is designed using an integrated operational amplifier with zero offset voltage drift and low-temperature drift metal foil resistors, thereby optimizing the transimpedance capacitor and follower circuit to reduce 1/f noise in the circuit. Active temperature control is employed to stabilize the responsivity of photodiode, and additional measures such as using a homemade low-noise power supply and shielding interference are taken to further reduce the noise. Ultimately, an ultra-low electronic noise photodetector operating in the 0.1 mHz–1 Hz frequency band is developed. A homemade intensity noise evaluation system is used to comprehensively assess the noise both in the time domain and in the frequency domain. The constant noise characteristics of the homemade detector are estimated experimentally. The experimental results show that the electronic noise spectral density of the homemade detector reaches 2×10–6 V/Hz1/2 in the 0.1 mHz–1 Hz frequency band, and the electronic noise of the detector does not vary with optical power. The detector achieves a gain of 35 kV/W at 1064 nm. The noise performance of the detector is two orders of magnitude lower than the laser intensity noise requirement (1×10–4 V/Hz1/2) for space-based gravitational wave detection, providing a critical component and technical support for high-gain optoelectronic feedback control and laser intensity noise suppression in space-based gravitational wave detection.
      Corresponding author: LI Wei, xliwei@sxu.edu.cn ; TIAN Long, tianlong@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62225504, U22A6003, 62035015, 12174234, 12274275), the Fundamental Research Program of Shanxi Province, China (Grant No. 202303021224006), and the Key R&D Program of Shanxi, China (Grant No. 202302150101015).
    [1]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R X, Adya V B, Affeldt C, Agathos M 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [3]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [4]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [5]

    Jennrich O 2009 Class. Quantum Grav. 26 153001Google Scholar

    [6]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [7]

    Badaracco F, Harms J, De Rossi C, Martynov D, Swinkels B L, Shoda A, van Heijningen J, Staley A, Matone L, Boschi V, Ohashi M, Hild S, Naticchioni L 2021 Phys. Rev. D 104 042006Google Scholar

    [8]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 Quantum Opt. 29 040201

    [9]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙 , 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L,Cheng L R,Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [10]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [11]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 Quantum Opt. 31 040201

    [12]

    Vahlbruch H, Wilken D, Mechmet M, Willke B 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [13]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [14]

    Luo Z, Wang Y, Wu Y, Mei J, Zhong Y, Hu Y, Yang S, Chen P, Chen X, Chen Y 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y, Zharov V, Zhou Z B 2016 Class. Quantum Grav. 33 035010Google Scholar

    [16]

    Buchler B C, Huntington E H, Harb C C, Ralph T C 1998 Phys. Rev. A 57 1286Google Scholar

    [17]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover

    [18]

    张骥 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [19]

    李玉琼, 王璐钰, 王晨昱 2019 光学精密工程 27 1710Google Scholar

    Li Y Q, Wang L Y, Wang C Y 2019 Opt. Precis. Eng. 27 1710Google Scholar

    [20]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [21]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光子学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [22]

    Robert K 2017 Understanding and Eliminating 1/f Noise https://www.analog.com/en/resources/analog-dialogue/articles/2017/04/21/10/42/understanding-and-eliminating-1-f-noise.html [2024-12-10]

    [23]

    Todd O, Amit P 2016 Measuring 2nV/√Hz Noise and 120 dB Supply Rejection on Linear Regulators https://www.analog.com/cn/resources/app-notes/an-159.html [2024-12-10]

    [24]

    Sallusti M, Gath P, Weise D, Rivas M, Vitelli M 2009 Class. Quantum Grav. 26 094015Google Scholar

    [25]

    Cutler C, Thorne K S 2002 General Relativity and Gravitation (Singapore: World Scientific) pp72–111

    [26]

    Hayashida T, Nanjo T, Furukawa A, Yamamuka M 2017 Appl. Phys. Express 10 061003Google Scholar

    [27]

    Li W S, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [28]

    Cooper J A Jr, Melloch M R, Singh R, Agarwal A, Palmour J W 2002 IEEE Trans. Electron Devices 49 665Google Scholar

    [29]

    Zhou H J, Wang W Z, Cheng C Y, Zheng Y H 2015 IEEE Trans. Electron Devices 15 2101Google Scholar

    [30]

    Using MCP6491 Op Amps for Photodetection Applications, Yang Zhen https://ww1.microchip.com/downloads/en/Appnotes/01494A.pdf [2024-12-10]

    [31]

    Graeme J G 1996 Photodiode Amplifiers: Op Amp Solutions (1st ed.) (New York: McGraw-Hill) pp21–23

    [32]

    Chilingarian A 1995 Pattern Recognit. Lett. 16 335

    [33]

    Chen X, Luo M, Hu R Z, Li R, Liang L J , Pang S Y 2019 J. Manuf. Process. 41 111Google Scholar

    [34]

    Williams J 2001 Electrical Design News: The Magazine of the Electronics Industry 46 83

    [35]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B,An B N,Li R X,Bai Y,Yin W B,Tian L,Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • 图 1  0.1 mHz—1 Hz频段低噪声探测器原理图

    Figure 1.  Schematic diagram of a low-noise detector in the 0.1 mHz–1 Hz frequency band.

    图 2  探测器静态测量原理示意图

    Figure 2.  Schematic diagram illustrating the principle of static measurement in detectors.

    图 3  光电二极管不同工作模式下电子学噪声测试表征 (a) 时域测试图; (b) 频域测试图

    Figure 3.  Characterization of photodiode electronic noise test in different operating modes: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    图 4  光电探测器在不同运放下电子学噪声测试表征 (a) 时域测试图; (b) 频域测试图

    Figure 4.  Photodetectors are characterized using different operating electronics noise tests: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    图 5  光电探测器测试原理图, 其中Laser为固体激光器, ISO为光隔离器; λ/2为半波片, PBS为偏振分束器, Filter为光衰减器, PD为光电探测器; Meter为高精度数字万用表

    Figure 5.  Photodetector test diagram, where Laser is soild-state laser; ISO is optical isolator; λ/2 is half-wave-plate: PBS is polarization beam splitter; Filter is optical attenuator; PD is photodetector; Meter is high-precision digital multimeter.

    图 6  探测器输入输出线性度表征

    Figure 6.  Characterization of detector input and output linearity

    图 7  探测器线性度测试噪声谱表征 (a) 时域测试图; (b) 频域测试图

    Figure 7.  Detector linearity test noise spectral characterization: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    表 1  三种低噪声运放芯片关键参数对比

    Table 1.  Comparison of key parameters of three low-noise operational amplifier chips

    Operational
    Amplifier model
    Offset voltage
    drift/(μV·℃–1)
    Input offset
    voltage/μV
    Input offset
    current/nA
    Input noise voltage Vp-p
    (0.1—10 Hz)/nV
    AD8671 0.3 30 8 77
    AD797 0.2 30 120 50
    LTC1151 0.01 0.5 0.02 1500
    DownLoad: CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R X, Adya V B, Affeldt C, Agathos M 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [3]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [4]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [5]

    Jennrich O 2009 Class. Quantum Grav. 26 153001Google Scholar

    [6]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [7]

    Badaracco F, Harms J, De Rossi C, Martynov D, Swinkels B L, Shoda A, van Heijningen J, Staley A, Matone L, Boschi V, Ohashi M, Hild S, Naticchioni L 2021 Phys. Rev. D 104 042006Google Scholar

    [8]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 Quantum Opt. 29 040201

    [9]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙 , 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L,Cheng L R,Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [10]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [11]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 Quantum Opt. 31 040201

    [12]

    Vahlbruch H, Wilken D, Mechmet M, Willke B 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [13]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [14]

    Luo Z, Wang Y, Wu Y, Mei J, Zhong Y, Hu Y, Yang S, Chen P, Chen X, Chen Y 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y, Zharov V, Zhou Z B 2016 Class. Quantum Grav. 33 035010Google Scholar

    [16]

    Buchler B C, Huntington E H, Harb C C, Ralph T C 1998 Phys. Rev. A 57 1286Google Scholar

    [17]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover

    [18]

    张骥 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [19]

    李玉琼, 王璐钰, 王晨昱 2019 光学精密工程 27 1710Google Scholar

    Li Y Q, Wang L Y, Wang C Y 2019 Opt. Precis. Eng. 27 1710Google Scholar

    [20]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [21]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光子学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [22]

    Robert K 2017 Understanding and Eliminating 1/f Noise https://www.analog.com/en/resources/analog-dialogue/articles/2017/04/21/10/42/understanding-and-eliminating-1-f-noise.html [2024-12-10]

    [23]

    Todd O, Amit P 2016 Measuring 2nV/√Hz Noise and 120 dB Supply Rejection on Linear Regulators https://www.analog.com/cn/resources/app-notes/an-159.html [2024-12-10]

    [24]

    Sallusti M, Gath P, Weise D, Rivas M, Vitelli M 2009 Class. Quantum Grav. 26 094015Google Scholar

    [25]

    Cutler C, Thorne K S 2002 General Relativity and Gravitation (Singapore: World Scientific) pp72–111

    [26]

    Hayashida T, Nanjo T, Furukawa A, Yamamuka M 2017 Appl. Phys. Express 10 061003Google Scholar

    [27]

    Li W S, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [28]

    Cooper J A Jr, Melloch M R, Singh R, Agarwal A, Palmour J W 2002 IEEE Trans. Electron Devices 49 665Google Scholar

    [29]

    Zhou H J, Wang W Z, Cheng C Y, Zheng Y H 2015 IEEE Trans. Electron Devices 15 2101Google Scholar

    [30]

    Using MCP6491 Op Amps for Photodetection Applications, Yang Zhen https://ww1.microchip.com/downloads/en/Appnotes/01494A.pdf [2024-12-10]

    [31]

    Graeme J G 1996 Photodiode Amplifiers: Op Amp Solutions (1st ed.) (New York: McGraw-Hill) pp21–23

    [32]

    Chilingarian A 1995 Pattern Recognit. Lett. 16 335

    [33]

    Chen X, Luo M, Hu R Z, Li R, Liang L J , Pang S Y 2019 J. Manuf. Process. 41 111Google Scholar

    [34]

    Williams J 2001 Electrical Design News: The Magazine of the Electronics Industry 46 83

    [35]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B,An B N,Li R X,Bai Y,Yin W B,Tian L,Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • [1] LI Xiang, WANG Jiawei, LI Fan, HUANG Tianshi, DANG Hao, ZHAO Desheng, TIAN Long, SHI Shaoping, LI Wei, YIN Wangbao, ZHENG Yaohui. Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection. Acta Physica Sinica, 2025, 74(3): 034202. doi: 10.7498/aps.74.20241319
    [2] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [4] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [5] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [6] Le Tao-Ran, Mu Heng-Lin, Xu Xin, Tan Yi-Dong, Wei Hao-Yun, Li Yan. Weak-light phase locking aided by frequency division phase meter for intersatellite laser interferometry. Acta Physica Sinica, 2023, 72(14): 149501. doi: 10.7498/aps.72.20221941
    [7] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [8] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [9] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [10] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [11] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [12] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [13] Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [14] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [15] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [16] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [17] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [18] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [19] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [20] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
Metrics
  • Abstract views:  866
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2024
  • Accepted Date:  25 December 2024
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回