Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy funneling effect and charge transfer behavior of MoS2 with thickness gradient

ZUO Huiling SHEN Quan LI Jing LIU Jing DONG Jiansheng

Citation:

Energy funneling effect and charge transfer behavior of MoS2 with thickness gradient

ZUO Huiling, SHEN Quan, LI Jing, LIU Jing, DONG Jiansheng
cstr: 32037.14.aps.74.20250661
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Energy funneling effect of two-dimensional materials provides an important method for modulating carrier transfer. However, the formation of energy funneling and its influences on the carrier transfer are still relatively uncharacterized. In this work, the energy funneling induced by the layer number gradient effect in MoS2 is investigated through atomic-bond-relaxation approach and first-principles calculations. It is found that the bandgap of MoS2 monotonically increases with the decrease of the layer number, leading the conduction band minimum (valence band maximum) of thin layer MoS2 to be higher than (lower than) that of thick layer MoS2. Therefore, both dual thickness gradient and triple thickness gradient MoS2 can achieve the energy funneling effect. As a result, the carriers will be directionally transferred from the thin layer region to the thick layer region. According to Marcus theory, the carrier transfer rate is dependent on drive force caused by the energy level difference with different thicknesses of MoS2. For the dual thickness gradient MoS2, when the thickness difference between adjacent layers is the largest, the driving force is the highest, which is 1L/bulk. In addition, owing to the driving force smaller than the reorganization energy in dual thickness gradient MoS2, a large driving force corresponds to a high carrier transfer rate, resulting in a higher carrier transfer rate of 1L/bulk than those in other dual thickness gradient systems. For the triple thickness gradient MoS2, there are two consecutive interface energy differences that induce driving forces. However, the carrier transfer rate is exponentially correlated with the driving force. Therefore, the carrier transfer rate of dual thickness gradient MoS2 will be higher than that of the corresponding triple thickness gradient MoS2. Our results demonstrate that the energy funneling effect induced by thickness gradient can realize carrier accumulation in the thick layer region without the need for p-n junctions, which is of great benefit in collecting photogenerated carriers. The atomic force microscopy lithography and chemical vapor deposition will be used to engineer thickness-gradient two-dimensional materials with enhanced optoelectronic properties in future.
      Corresponding author: DONG Jiansheng, jsdong@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12364007), the Basic Research Program for Young Students of Natural Science Foundation of Hunan Province, China (Grant No. 2025JJ60929), the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 24A0366), and the Hunan Students’ Platform for Innovation and Entrepreneurship Training Program, China (Grant No. S202310531036).
    [1]

    Jiang H, Zhang X K, Chen K L, He X Y, Liu Y H, Yu H H, Gao L, Hong M Y, Wang Y, Zhang Z, Zhang Y 2025 Nat. Mater. 24 188Google Scholar

    [2]

    Zhao J J, Liao M Z, Shen C, Wang Q Q, Yang R, Watanabe K, Taniguchi T, Huang Z H, Shi D X, Liu K H, Sun Z P, Feng J, Du L J, Zhang G Y 2025 Phys. Rev. Lett. 134 086201Google Scholar

    [3]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [4]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [6]

    Yang F, Hu Y T, Ou J L, Li Q Y, Xie X X, Han H P, Cai C L, Ruan S C, Xiang B X 2025 ACS Photonics 12 2128Google Scholar

    [7]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [8]

    Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [9]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin K I 2020 Nat. Photonics 14 324Google Scholar

    [10]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J 2021 Nano Lett. 21 43Google Scholar

    [11]

    刘俊杰, 左慧玲, 谭鑫, 董健生 2024 物理学报 73 236801Google Scholar

    Liu J J, Zuo H L, Tan X, Dong J S 2024 Acta Phys. Sin. 73 236801Google Scholar

    [12]

    Sun Z Y, Li Y, Xu B, Chen H, Wang P, Zhao S X, Li Y, Gao B, Dou X M, Sun B Q, Zhen L, Xu C Y 2021 Adv. Opt. Mater. 9 2100438Google Scholar

    [13]

    Xu N, Pei X D, Qiu L P, Zhan L, Wang P, Shi Y, Li S L 2023 Adv. Mater. 35 2300618Google Scholar

    [14]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [15]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98 263112Google Scholar

    [16]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [17]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [18]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [19]

    Xiong S, Cao G X 2015 Nanotechnology 26 185705Google Scholar

    [20]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 326 1Google Scholar

    [21]

    Marcus R A 1956 J. Chem. Phys. 24 966Google Scholar

    [22]

    Zhang C, Lian L Y, Yang Z L, Zhang J B, Zhu H M 2019 J. Phys. Chem. Lett. 10 7665Google Scholar

    [23]

    Kresse G, Hafner J. 1993 Phys. Rev. B 47 558Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [27]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [28]

    Kang J, Tongay S, Zhou J, Li J B, Wu J Q 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [29]

    Dong J S, Liu J J, Liao W H, Yang X X, He Y, Ouyang G 2024 J. Appl. Phys. 136 125302Google Scholar

    [30]

    Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z H 2015 Nano Lett. 15 8000Google Scholar

    [31]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [32]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 12 6333Google Scholar

    [33]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [34]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [35]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30 260Google Scholar

  • 图 1  (a) 双厚度梯度MoS2结构示意图; (b) 双厚度梯度MoS2能带漏斗及其对电荷转移示意图; (c) 三厚度梯度MoS2结构示意图; (d) 三厚度梯度MoS2能带漏斗及其对电荷转移示意图

    Figure 1.  (a) Schematic diagrams of dual thickness gradient MoS2; (b) energy funneling and its effect on carrier transfer in dual thickness gradient MoS2; (c) schematic diagrams of triple thickness gradient MoS2; (d) energy funneling and its effect on carrier transfer in triple thickness gradient MoS2.

    图 2  (a) 不同层数MoS2势函数与原子间距之间的关系; (b) MoS2层数依赖的带隙漂移, 插图是MoS2导带底和价带顶随层数的变化规律

    Figure 2.  (a) Relationship between potential and distance of MoS2 with different layer number; (b) layer number dependent bandgap of MoS2, the inset of (b) shows the conduction band minimum (CBM) and valence band maximum (VBM) of MoS2 as a function of layer number.

    图 3  不同层数MoS2的能带结构

    Figure 3.  Band structures of MoS2 with different layer.

    图 4  (a) 双厚度梯度MoS2界面能级差诱导的驱动力; (b) 双厚度梯度MoS2中的能带漏斗对电荷转移速率影响; (c) 三厚度梯度MoS2界面能级差诱导的驱动力; (d) 三厚度梯度MoS2中的能带漏斗对电荷转移速率影响

    Figure 4.  (a) Driving force induced by the energy level difference in dual thickness gradient MoS2; (b) the effect of energy funneling on the charge transfer rate in dual thickness gradient MoS2; (c) the driving force induced by the energy level difference in triple thickness gradient MoS2; (d) the effect of energy funneling on the charge transfer rate in triple thickness gradient MoS2.

  • [1]

    Jiang H, Zhang X K, Chen K L, He X Y, Liu Y H, Yu H H, Gao L, Hong M Y, Wang Y, Zhang Z, Zhang Y 2025 Nat. Mater. 24 188Google Scholar

    [2]

    Zhao J J, Liao M Z, Shen C, Wang Q Q, Yang R, Watanabe K, Taniguchi T, Huang Z H, Shi D X, Liu K H, Sun Z P, Feng J, Du L J, Zhang G Y 2025 Phys. Rev. Lett. 134 086201Google Scholar

    [3]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [4]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [6]

    Yang F, Hu Y T, Ou J L, Li Q Y, Xie X X, Han H P, Cai C L, Ruan S C, Xiang B X 2025 ACS Photonics 12 2128Google Scholar

    [7]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [8]

    Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [9]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin K I 2020 Nat. Photonics 14 324Google Scholar

    [10]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J 2021 Nano Lett. 21 43Google Scholar

    [11]

    刘俊杰, 左慧玲, 谭鑫, 董健生 2024 物理学报 73 236801Google Scholar

    Liu J J, Zuo H L, Tan X, Dong J S 2024 Acta Phys. Sin. 73 236801Google Scholar

    [12]

    Sun Z Y, Li Y, Xu B, Chen H, Wang P, Zhao S X, Li Y, Gao B, Dou X M, Sun B Q, Zhen L, Xu C Y 2021 Adv. Opt. Mater. 9 2100438Google Scholar

    [13]

    Xu N, Pei X D, Qiu L P, Zhan L, Wang P, Shi Y, Li S L 2023 Adv. Mater. 35 2300618Google Scholar

    [14]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [15]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98 263112Google Scholar

    [16]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [17]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [18]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [19]

    Xiong S, Cao G X 2015 Nanotechnology 26 185705Google Scholar

    [20]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 326 1Google Scholar

    [21]

    Marcus R A 1956 J. Chem. Phys. 24 966Google Scholar

    [22]

    Zhang C, Lian L Y, Yang Z L, Zhang J B, Zhu H M 2019 J. Phys. Chem. Lett. 10 7665Google Scholar

    [23]

    Kresse G, Hafner J. 1993 Phys. Rev. B 47 558Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [27]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [28]

    Kang J, Tongay S, Zhou J, Li J B, Wu J Q 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [29]

    Dong J S, Liu J J, Liao W H, Yang X X, He Y, Ouyang G 2024 J. Appl. Phys. 136 125302Google Scholar

    [30]

    Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z H 2015 Nano Lett. 15 8000Google Scholar

    [31]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [32]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 12 6333Google Scholar

    [33]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [34]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [35]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30 260Google Scholar

  • [1] DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan. Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate. Acta Physica Sinica, 2025, 74(5): 057402. doi: 10.7498/aps.74.20241671
    [2] LI Binjiang, ZHANG Yuchen, LI Wei, WANG Xuehua. Improvement of SERS detection performance based on MoS2/Zeolitic imidazolate framework-67 heterostructure. Acta Physica Sinica, 2025, 74(12): 127401. doi: 10.7498/aps.74.20250410
    [3] ZHANG Hengbo, LI Yinhui, LI Weidong, GAO Fei, YIN Rongyan, LIANG Jianguo, ZHAO Peng, ZHOU Yunlei, LI Pengwei, BIAN Guibin. Piezoelectric sensing properties of PAN/MoS2 flexible composite nanofiber film. Acta Physica Sinica, 2025, 74(7): 076801. doi: 10.7498/aps.74.20241676
    [4] WANG Xiaoyun, FAN Huichuan, CHEN Xiaoshuang, WANG Lin. Simulation of terahertz detection based on plasma waves in monolayer MoS2 field-effect transistor. Acta Physica Sinica, 2025, 74(15): 150701. doi: 10.7498/aps.74.20250517
    [5] Liu Jun-Jie, Zuo Hui-Ling, Tan Xin, Dong Jian-Sheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [6] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [7] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [8] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [9] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [10] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [11] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [12] Wang Fen-Tao, Fan Teng, Zhang Shi-Xiong, Sun Zhen-Hao, Fu Lei, Jia Wei, Shen Bo, Tang Ning. Growth of monolayer MoS2 films dual-assisted by NaCl. Acta Physica Sinica, 2022, 71(12): 128104. doi: 10.7498/aps.71.20220273
    [13] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [14] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [15] Li Hui-Hua, Zhang Jia-Hui, Yu Sen-Jiang, Lu Chen-Xi, Li Ling-Wei. Strain effects of periodic thickness-gradient films on flexible substrates. Acta Physica Sinica, 2021, 70(1): 016801. doi: 10.7498/aps.70.20201008
    [16] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [17] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [18] Tao Ze-Hua, Dong Hai-Ming. Electron screening lengths and plasma spectrum in single layer MoS2. Acta Physica Sinica, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [19] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [20] Liu Jun, Liang Pei, Shu Hai-Bo, Shen Tao, Xing Song, Wu Qiong. First principles study on molecule doping in MoS2 monolayer. Acta Physica Sinica, 2014, 63(11): 117101. doi: 10.7498/aps.63.117101
Metrics
  • Abstract views:  645
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2025
  • Accepted Date:  17 July 2025
  • Available Online:  08 August 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回