Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells

Luo Yuan Zhu Cong-Tan Ma Shu-Peng Zhu Liu Guo Xue-Yi Yang Ying

Citation:

Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells

Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying
PDF
HTML
Get Citation
  • SnO2 has the advantages of excellent photostability and can be prepared at low-temperature below 200 ℃. It is regarded as one of the excellent materials for the electron transport layer, and widely used in efficient and stable planar heterojunction perovskite solar cells. In this work, the low-cost, dense and uniform SnO2 electron transport layer is prepared by spin coating at low temperature (150 ℃) for perovskite solar cells with a structure of FTO/SnO2/CH3NH3PbI3 (MAPbI3)/Spiro-OMeTAD/Au. The crystallization and photoelectric properties of SnO2 electron transport layers prepared at different concentrations (2.5%–10%) at 150 ℃, and the influences of SnO2 electron transport layers on the formation of perovskite films and the performances of perovskite solar cells are discussed. By analyzing the scanning electron microscope (SEM), ultraviolet-visible light absorption spectrum (UV-Vis) and transmission spectrum of the SnO2 film, it is found that the coverage and light transmittance of the substrate and band gap of the SnO2 film increase as the SnO2 content increases, while the absorbance decreases. By analyzing the SEM, UV-Vis, X-ray diffraction (XRD) and steady-state photoluminescence spectrum (PL) analysis of the SnO2/MAPbI3 thin film, it is found that the MAPbI3 deposited on the SnO2 layer with a concentration of 7.5% is uniform and pinhole-free, has the largest particle size and the best crystallinity, as well as more effective charge extraction capability and transport capability. By analyzing the electrochemical impedance (EIS) and external quantum efficiency (EQE) of the device, the SnO2 electron transport layer with a concentration of 7.5% has better interface contact and lower interface resistance, which is beneficial to reducing the recombination of carriers and improving the photoelectric conversion capability, The perovskite solar cells based on SnO2 layer prepared with a concentration of 7.5% reaches a photoelectric conversion efficiency of 15.82% (Voc = 1.06 V, Jsc = 21.62 mA/cm2, FF = 69.40%), After storing for 600 h in ambient air ((25±5) ℃, RH>70%) without encapsulation, its efficiency remains 92% of the initial efficiency. At the same time, we prepare flexible devices on flexible substrates (TIO/PEN) by using SnO2 precursor with a concentration of 7.5%, which exhibits good photovoltaic performance and achieves a photoelectric conversion efficiency of 13.12%, and storage time for 84 d in ambient air ((30±5) ℃, RH>70%) without encapsulation, its efficiency remains 48% of the initial efficiency. The PCE retains 78% of the initial efficiency after 1000 bending cycles with a bending radius of 3 mm. The study of optimizing the concentration of SnO2 has laid a foundation for improving the performance of flexible perovskite solar cells.
      Corresponding author: Yang Ying, muyicaoyang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774169), the Qingyuan Innovation and Entrepreneurship Research Team Project, China (Grant No. 2018001), the Guangdong Science and Technology Planning Project, China (Grant No. 2018B030323010), and the Central South University Postgraduate Independent Exploration and Innovation Project, China (Grant No. 2021zzts0612)
    [1]

    Bahadur J, Ghahremani A H, Martin B, Pishgar S, Druffel T, Sunkara M K, Pal K 2019 J. Mater. Sci- Mater. Electron. 30 18452Google Scholar

    [2]

    Du J H, Feng L P, Guo X, Huang X P, Lin Z H, Su J, Hu Z S, Zhang J C, Chang J J, Hao Y 2020 J. Power Sources 455 227974

    [3]

    Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H 2019 Sci. China-Chem. 62 800Google Scholar

    [4]

    Chan S H, Chang Y H, Wu M C 2019 Front. Mater. 6 57Google Scholar

    [5]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [6]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html, 2022

    [7]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [8]

    Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [9]

    Kim M R, Choi H W, Bark C W 2020 J. Nanosci. Nanotechnol. 20 5491Google Scholar

    [10]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [11]

    Yi J, Zhuang J, Liu X C, Wang H Y, Ma Z, Huang D J, Guo Z L, Li H M 2020 J. Alloys Compd. 830 154710

    [12]

    杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2020 化学学报 78 217Google Scholar

    Yang Y, Lin F Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 217Google Scholar

    [13]

    朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益 2020 化学学报 78 1102Google Scholar

    Zhu C T, Yang Y, Zhao B K, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 1102Google Scholar

    [14]

    杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益 2019 化学学报 77 964Google Scholar

    Yang Y, Zhu C T, Lin F Y, Chen T, Pan D Q, Guo X Y 2019 Acta Chim. Sin. 77 964Google Scholar

    [15]

    Liu Z, Wu S, Yang X, Zhou Y, Jin J, Sun J, Zhao L, Wang S 2021 Mater. Sci. Semicon. Process 123 105511Google Scholar

    [16]

    Deng K, Chen Q, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [17]

    Xue R, Zhou X, Peng S, Xu P, Wang S, Xu C, Zeng W, Xiong Y, Liang D 2020 ACS Sustain. Chem. Eng. 8 10714

    [18]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [19]

    Xu H Y, Hu Z Y, Wang Y Y, Yang C, Gao C, Zhang H C, Zhang J, Zhu Y J 2020 Nanotechnology 31 315205

    [20]

    Jinbiao Jia J D, Jihuai Wu, Haoming Wei, Bingqiang Cao 2020 J. Alloys Compd. 844 156032Google Scholar

    [21]

    Xie H X, Yin X T, Chen P, Liu J, Yang C H, Que W X, Wang G F 2019 Mater. Lett. 234 311Google Scholar

    [22]

    Noh M F M, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Yusoff A R M, Jang J, Teridi M A M 2019 J. Alloys Compd. 773 997Google Scholar

    [23]

    Méndez P F, Muhammed S K M, Barea E M, Masi S, Mora-Sero I 2019 Sol. RRL 3 1900191

    [24]

    Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J 2019 J. Mater. Chem. A. 7 10636Google Scholar

    [25]

    Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M 2019 Adv. Funct. Mater. 29 1807604Google Scholar

    [26]

    Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H 2019 J. Energy Chem. 35 144Google Scholar

    [27]

    Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Miyasaka T 2015 J. Mater. Chem. A 3 10837Google Scholar

    [28]

    Zhang W Y, Li Y C, Liu X, Tang D Y, Li X, Yuan X 2020 Chem. Eng. J. 379 122298

    [29]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy. 26 208Google Scholar

    [30]

    Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S 2019 J. Mater. Chem. A. 7 6659Google Scholar

    [31]

    Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W 2019 Adv. Funct. Mater. 29 1900557Google Scholar

    [32]

    陈甜, 杨英, 赵婉玉, 潘德群, 朱从潭, 林飞宇, 郭学益 2019 化学学报 77 447Google Scholar

    Chen T, Yang Y, Zhao W Y, Pan D Q, Zhu C T, Lin F Y, Guo X Y 2019 Acta Chim. Sin. 77 447Google Scholar

    [33]

    Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2021 Rare Met. 40 2402Google Scholar

    [34]

    林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2021 物理化学学报 37 2005007Google Scholar

    Lin F Y, Yang Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2021 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [35]

    Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H 2017 Appl. Surf. Sci. 391 677Google Scholar

    [36]

    Zhou W, Liu Y Y, Yang Y Z, Wu P 2014 J. Phys. Chem. C. 118 6448Google Scholar

    [37]

    Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J 2016 J. Mater. Chem. A. 4 8374Google Scholar

    [38]

    Huang L, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Jianjun J J 2017 ACS Appl. Mater. Interfaces. 9 21909Google Scholar

    [39]

    Wang S, Sang H, Jiang Y, Wang Y, Xiong Y, Yu Y, He R, Chen B, Zhao X, Liu Y 2021 ACS Appl. Mater. Interfaces. 13 48555Google Scholar

    [40]

    Kouhnavard M, Niedzwiedzki D M, Biswas P 2020 Int. J. Energy Res. 44 11361

    [41]

    Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X 2020 J. Mater. Chem. C. 8 11638Google Scholar

    [42]

    Fru J N, Nombona N, Diale M 2020 Vacuum 182 109727

    [43]

    Huang X P, Du J H, Guo X, Lin Z H, Ma J, Su J, Feng L P, Zhang C F, Zhang J C, Chang J J, Hao Y 2020 Sol. RRL 4 1900336

    [44]

    Wan J S, Tao L, Wang Q, Zhang K, Xie J, Zhang J, Wang H 2021 Chem. Eng. J. 403 126435

    [45]

    Wang H B, Liu H G, Ye F H, Chen Z L, Ma J J, Liang J W, Zheng X L, Tao C, Fang G J 2021 J. Power Sources 481 229160

  • 图 1  不同浓度制备的FTO/SnO2薄膜 SEM图 (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g), (h) EDS图(插图为对应的元素重量和原子百分比)

    Figure 1.  FTO/SnO2 films prepared with different weight concentrations: SEM image (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g), (h) EDS image (The inset indicating the weight and atomic percentage).

    图 2  不同浓度制备的SnO2薄膜 (a)UV-Vis光谱图;(b)透射光谱图(插图为SnO2薄膜的Tauc图)

    Figure 2.  SnO2 films with different weight concentrations: (a) UV-Vis spectra; (b) transmittance spectra (The inset is Tauc diagram of SnO2 films).

    图 3  不同浓度制备的SnO2/MAPbI3薄膜 SEM表面形貌 (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g) SEM截面形貌, 浓度为7.50%

    Figure 3.  SnO2/MAPbI3 films prepared with different weight concentrations: SEM surface morphologies (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g) SEM morphology of the cross-section for weight concentration of 7.50%.

    图 4  不同浓度制备的SnO2/MAPbI3薄膜 (a) UV-Vis吸收光谱; (b) XRD图; (c) PL图; (d)归一化的PL图

    Figure 4.  SnO2/MAPbI3 films with different weight concentration of SnO2: (a) UV-Vis absorption spectra; (b) XRD pattern; (c) PL spectra; (d) normalized PL spectra.

    图 5  不同浓度制备的SnO2电子传输层的PSC (a)结构图; (b) J-V曲线图; (c) Nyquist图; (d) EQE图

    Figure 5.  PSC based on SnO2 electron transport layers prepared with different weight concentrations: (a) Diagram of device structures; (b) J-V curves; (c) Nyquist plots; (d) EQE curves.

    图 6  不同浓度制备SnO2 电子传输层的PSC光伏参数统计图 (a) 电流密度; (b)开路电压; (c)填充因子; (d)光电转换效率

    Figure 6.  Statistical of PSC photovoltaic parameters based on SnO2 electron transport layers prepared with different concentrations: (a) Current density; (b) open circuit voltage; (c) fill factor; (d) photoelectric conversion efficiency.

    图 7  浓度为7.5%的SnO2电子传输层制备的PSC的稳定性结果

    Figure 7.  Stability test results of PSC based on SnO2 electron transport layers prepared with weight concentration of 7.5%.

    图 8  (a) 150 ℃, (c) 450 ℃退火FTO/SnO2薄膜的SEM图; (b) 150 ℃, (d) 450 ℃退火SnO2/MAPbI3薄膜的SEM图; 不同温度下退火SnO2薄膜(e) UV-Vis吸收光谱, (f) Tauc图, (g)透射光谱图; 不同温度下退火SnO2/MAPbI3薄膜(h) UV-Vis吸收光谱, (i) XRD图, (j) PL图; PSC器件 (k) J-V曲线, (l) EQE曲线

    Figure 8.  SEM images of FTO/SnO2 films annealed at (a) 150 ℃, (c) 450 ℃; SEM images of SnO2/MAPbI3 films annealed at (b) 150 ℃, (d) 450 ℃; SnO2 films annealed under different temperature: (e) UV-Vis absorption spectra, (f) Tauc diagram, (g) transmittance spectra; SnO2/MAPbI3 films annealed under different temperature: (h) UV-Vis absorption spectra, (i) XRD spectra, (j) PL spectra; PSC devices: (k) J-V curves; (l) EQE curves.

    图 9  SnO2电子传输层的柔性PSC (a) 不同浓度制备器件的J-V曲线; (b) r = 3 mm, 浓度为7.5%柔性器件的PCE演变; (c)浓度为7.5%柔性器件的稳定性

    Figure 9.  Flexible PSC with SnO2 electron transport layers: (a) J-V curves of device prepared with different weight concentrations; (b) r = 3 mm, PCE evolution of flexible device with weight concentration of 7.5%; (c) stability results of flexible device with weight concentration of 7.5%.

    表 1  不同浓度下制备SnO2电子传输层的PSC光电性能参数

    Table 1.  Optoelectronic performance parameters of PSC based on SnO2 electron transport layers prepared with different concentrations.

    Concentration/%RsRtrJsc/(mA·cm–2)Voc/VFF/%PCE/%
    2.5036.89394.3020.801.0754.4912.12
    3.0048.19364.1020.441.0663.3213.65
    3.7543.46348.9020.401.1065.1114.56
    5.0042.51322.8020.381.0865.1814.31
    7.5046.47277.6021.621.0669.4015.82
    10.041.64321.3022.261.0267.4715.33
    DownLoad: CSV

    表 2  不同浓度下制备SnO2电子传输层的柔性器件光电性能参数

    Table 2.  Photovoltaic parameters of flexible device based on SnO2 layer prepared with different weight concentrations.

    Concentration/%Jsc/(mA·cm–2)Voc/VFF/%PCE/%
    2.5017.330.9457.009.26
    3.0017.330.9861.2510.32
    3.7518.391.0261.6211.37
    5.0018.601.0665.7913.00
    7.5018.441.0766.6513.12
    10.020.541.0362.2813.10
    DownLoad: CSV
  • [1]

    Bahadur J, Ghahremani A H, Martin B, Pishgar S, Druffel T, Sunkara M K, Pal K 2019 J. Mater. Sci- Mater. Electron. 30 18452Google Scholar

    [2]

    Du J H, Feng L P, Guo X, Huang X P, Lin Z H, Su J, Hu Z S, Zhang J C, Chang J J, Hao Y 2020 J. Power Sources 455 227974

    [3]

    Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H 2019 Sci. China-Chem. 62 800Google Scholar

    [4]

    Chan S H, Chang Y H, Wu M C 2019 Front. Mater. 6 57Google Scholar

    [5]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [6]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html, 2022

    [7]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [8]

    Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [9]

    Kim M R, Choi H W, Bark C W 2020 J. Nanosci. Nanotechnol. 20 5491Google Scholar

    [10]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [11]

    Yi J, Zhuang J, Liu X C, Wang H Y, Ma Z, Huang D J, Guo Z L, Li H M 2020 J. Alloys Compd. 830 154710

    [12]

    杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2020 化学学报 78 217Google Scholar

    Yang Y, Lin F Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 217Google Scholar

    [13]

    朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益 2020 化学学报 78 1102Google Scholar

    Zhu C T, Yang Y, Zhao B K, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 1102Google Scholar

    [14]

    杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益 2019 化学学报 77 964Google Scholar

    Yang Y, Zhu C T, Lin F Y, Chen T, Pan D Q, Guo X Y 2019 Acta Chim. Sin. 77 964Google Scholar

    [15]

    Liu Z, Wu S, Yang X, Zhou Y, Jin J, Sun J, Zhao L, Wang S 2021 Mater. Sci. Semicon. Process 123 105511Google Scholar

    [16]

    Deng K, Chen Q, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [17]

    Xue R, Zhou X, Peng S, Xu P, Wang S, Xu C, Zeng W, Xiong Y, Liang D 2020 ACS Sustain. Chem. Eng. 8 10714

    [18]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [19]

    Xu H Y, Hu Z Y, Wang Y Y, Yang C, Gao C, Zhang H C, Zhang J, Zhu Y J 2020 Nanotechnology 31 315205

    [20]

    Jinbiao Jia J D, Jihuai Wu, Haoming Wei, Bingqiang Cao 2020 J. Alloys Compd. 844 156032Google Scholar

    [21]

    Xie H X, Yin X T, Chen P, Liu J, Yang C H, Que W X, Wang G F 2019 Mater. Lett. 234 311Google Scholar

    [22]

    Noh M F M, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Yusoff A R M, Jang J, Teridi M A M 2019 J. Alloys Compd. 773 997Google Scholar

    [23]

    Méndez P F, Muhammed S K M, Barea E M, Masi S, Mora-Sero I 2019 Sol. RRL 3 1900191

    [24]

    Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J 2019 J. Mater. Chem. A. 7 10636Google Scholar

    [25]

    Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M 2019 Adv. Funct. Mater. 29 1807604Google Scholar

    [26]

    Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H 2019 J. Energy Chem. 35 144Google Scholar

    [27]

    Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Miyasaka T 2015 J. Mater. Chem. A 3 10837Google Scholar

    [28]

    Zhang W Y, Li Y C, Liu X, Tang D Y, Li X, Yuan X 2020 Chem. Eng. J. 379 122298

    [29]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy. 26 208Google Scholar

    [30]

    Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S 2019 J. Mater. Chem. A. 7 6659Google Scholar

    [31]

    Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W 2019 Adv. Funct. Mater. 29 1900557Google Scholar

    [32]

    陈甜, 杨英, 赵婉玉, 潘德群, 朱从潭, 林飞宇, 郭学益 2019 化学学报 77 447Google Scholar

    Chen T, Yang Y, Zhao W Y, Pan D Q, Zhu C T, Lin F Y, Guo X Y 2019 Acta Chim. Sin. 77 447Google Scholar

    [33]

    Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2021 Rare Met. 40 2402Google Scholar

    [34]

    林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2021 物理化学学报 37 2005007Google Scholar

    Lin F Y, Yang Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2021 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [35]

    Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H 2017 Appl. Surf. Sci. 391 677Google Scholar

    [36]

    Zhou W, Liu Y Y, Yang Y Z, Wu P 2014 J. Phys. Chem. C. 118 6448Google Scholar

    [37]

    Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J 2016 J. Mater. Chem. A. 4 8374Google Scholar

    [38]

    Huang L, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Jianjun J J 2017 ACS Appl. Mater. Interfaces. 9 21909Google Scholar

    [39]

    Wang S, Sang H, Jiang Y, Wang Y, Xiong Y, Yu Y, He R, Chen B, Zhao X, Liu Y 2021 ACS Appl. Mater. Interfaces. 13 48555Google Scholar

    [40]

    Kouhnavard M, Niedzwiedzki D M, Biswas P 2020 Int. J. Energy Res. 44 11361

    [41]

    Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X 2020 J. Mater. Chem. C. 8 11638Google Scholar

    [42]

    Fru J N, Nombona N, Diale M 2020 Vacuum 182 109727

    [43]

    Huang X P, Du J H, Guo X, Lin Z H, Ma J, Su J, Feng L P, Zhang C F, Zhang J C, Chang J J, Hao Y 2020 Sol. RRL 4 1900336

    [44]

    Wan J S, Tao L, Wang Q, Zhang K, Xie J, Zhang J, Wang H 2021 Chem. Eng. J. 403 126435

    [45]

    Wang H B, Liu H G, Ye F H, Chen Z L, Ma J J, Liang J W, Zheng X L, Tao C, Fang G J 2021 J. Power Sources 481 229160

  • [1] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Research on the fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin. Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern. Acta Physica Sinica, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [11] Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive. Acta Physica Sinica, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [12] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [13] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [14] Adopting PEABr additive to obtain efficient and stable carbon-based CsPbBr3 solar cells. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211344
    [15] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [16] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [17] Liu Xiao-Min, Li Yi-Hui, Wang Xing-Tao, Zhao Yi-Xin. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. Acta Physica Sinica, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [18] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [19] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [20] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
Metrics
  • Abstract views:  10162
  • PDF Downloads:  359
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2021
  • Accepted Date:  08 January 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回