Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase

Chen Xue-Lian Jiao Hu-Po Shen Yan-Bing Pan Xi-Qiang

Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang. Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase. Acta Phys. Sin., 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066
Citation: Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang. Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase. Acta Phys. Sin., 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066

Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase

Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are prepared by adding the mixture ligand of oleylamine and tetradecyl-phosphonic acid (OLA-TDPA) to CsPbBr3 perovskite nanocrystals through ligand post-treatment. The structure, the morphology, optical property and the stability of CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are characterized by X-ray diffraction, transmission electron microscopy (high-resolution TEM), UV-vis spectrophotometer, fluorescence spectrophotometer, and transient fluorescence spectrophotometer. The as-obtained nanocrystals have a high photoluminescence quantum yield of 78% and long fluorescence lifetime of 476 ns when prepared at the optimal molar ratio of CsPbBr3, TDPA and OLA (1∶1∶15). Moreover, the nanocrystal is quite stable at room temperature for at least 25 days, and has a good thermal stability in five heating-cooling cycles at temperature in a range between 293 K and 328 K. The formation of dual-phase nanocrystals go through two stages of surface passivation/dissolution and recrystallization to generate CsPbBr3-Cs4PbBr6 nanocrystals. In the first stage (t ≤ 1 h), the m OLA-TDPA mixing ligand can form (RNH3)2PO3 X type ligand and exchanges with [RNH3]+-[RCOO] at the surface of CsPbBr3 nanocrystals, which can effectively passivate surface defects by strong interaction with Pb2+ and high ligand content at surface, thus improving the quantum yield and fluorescence life of CsPbBr3 nanocrystals with spherical shape. In the second stage, with the increase of reaction time, PbBr2 partially dissolves from the surface of CsPbBr3 nanocrystals, then some CsPbBr3 nanocrystals transform into lead-depleted Cs4PbBr6 nanocrystals with hexagonal phase, thus improving the stability of nanocrystals. This work has a certain reference value for promoting the applications of high efficient and stable perovskite nanocrystals.
      PACS:
      78.67.Bf(Nanocrystals, nanoparticles, and nanoclusters)
      68.60.Dv(Thermal stability; thermal effects)
      68.55.A-(Nucleation and growth)
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn ; Pan Xi-Qiang, pxq2336@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191) and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS21112073).

    金属卤化物钙钛矿纳米晶拥有优异的性质, 如长的载流子扩散长度、高的吸收系数、窄的光致发光, 以及高的荧光量子效率[1]和在可见光谱内的可调节带隙[2,3], 使其在发光二极管[4-6]、太阳能电池[7,8]、激光器[9]等领域展现出极大的应用潜力.

    铯铅卤钙钛矿纳米晶(CsPbX3 (X = Br, Cl, I) NCs)的合成主要依赖于油胺和油酸作为表面活性剂, 它们分别与纳米晶表面的Br和Cs原子结合形成配合物. 众多研究表明[10-12], 由于弱相互作用这种配合物不能紧密地结合在纳米晶表面, 处于高度表面吸脱附状态, 从而使纳米晶易团聚, 导致钙钛矿纳米晶较差的稳定性. 此外, 钙钛矿材料属于离子型晶体, 其晶体结构对极性溶剂非常敏感, 极易在水气的作用下被破坏, 而且紫外光照、温度以及氧的存在都会使晶体结构遭到破坏. 这些都成为制约钙钛矿纳米晶商业化应用的主要因素.

    为了解决CsPbX3 NCs稳定性差的问题, 组分工程、配体工程、表面包覆、器件封装等策略被相继提出和报道, 其中配体工程策略不仅能减少纳米晶的表面缺陷[13-17]且能通过发生相变来显著提高纳米晶的稳定性[18-21]. 例如Liang等[22]通过改变前驱体中油胺的量直接合成了CsPbBr3和Cs4PbBr6 NCs纳米晶. Peng等[23]通过高温热注射法(Hot Injection, HI)法合成得到了CsPbBr3和Cs4PbBr6 NCs共存的混合纳米晶, 与CsPbBr3 NCs相比, CsPbBr3-Cs4PbBr6 NCs具有更高的荧光产率. 然而, 通过一步合成法制备纳米晶时前驱体的化学计量比通常难以控制. 因而, Su等[24]采用后处理法等向制备好的CsPbBr3 NCs中加入ZnBr2获得了CsPbBr3和Cs4PbBr6 NCs共存的混合纳米晶, 最终获得的CsPbBr3-Cs4PbBr6 NCs具有接近100%的高荧光量子效率. 研究表明六方相的Cs4PbX6 NCs在晶格中具有完全分离单个[PbBr6]4–八面体, 从而具有优越的稳定性[25]. 且理论计算也表明CsPbBr3和Cs4PbBr6 NCs共存时的性能要优于CsPbBr3 NCs[26]. 可见, 通过在CsPbBr3 NCs后处理过程中引入Cs4PbBr6纳米晶, 会对钙钛矿纳米晶的光电性能和稳定性产生显著影响, 但有关于这种材料的简单合成以及形成过程的研究仍然较少.

    基于此, 本文采用配体后处理法在CsPbBr3 NCs中加入十四烷基膦酸(tetradecylphosphonic acid, TDPA)和油胺(oleylamine, OLA)的混合配体(OLA-TDPA), 获得了CsPbBr3-Cs4PbBr6混合相纳米晶(OLA-TDPA-PNCs), 系统研究了纳米晶的相组成、形貌、光学性质、稳定性, 解释了纳米晶光学性质和稳定性提升原因, 并对形成过程进行探讨.

    溴化铯(CsBr, 99.9%)、溴化铅(PbBr2, 99%)、十四烷基膦酸(C14H31O3P, 98%)、N, N-二甲基甲酰胺(DMF, 99.9%)、油胺(OLA, 80%—90%)均采购于Aladdin公司; 油酸(oleic acid, OA, 90%)采购于 Sigma-Aldrich 公司; 甲苯、乙酸乙酯采购于国药集团化学试剂有限公司.

    称取0.4 mmol的CsBr和0.4 mmol的PbBr2加入到搅拌的10 mL DMF溶液中, 随后加入0.5 mL OLA和1 mL OA作为稳定剂和表面活性剂, 将其在一定温度下进行搅拌直至药品完全溶解即可获得前驱体. 后取0.1 mL前驱体快速注入到剧烈搅拌的1 mL甲苯溶液中. 待反应10 s后, 溶液表现出了强烈的绿色荧光, 停止搅拌即获得CsPbBr3 NCs. 后再将钙钛矿纳米晶进行纯化, 向CsPbBr3 NCs溶液中加入3倍体积的反溶剂乙酸乙酯, 在7000 r/min下离心4 min后倒掉上清液, 收集所得沉淀物, 将其在室温真空条件下干燥12 h.

    将干燥的CsPbBr3 NCs重新分散在甲苯相中, 取0.5 mL的分散液(1.72×10–3 mol/L的Pb)与0.5 mL的混合配体溶液(将TDPA和无水OLA分散在甲苯溶液中, CsPbBr3, TDPA与OLA的物质的量的比为1∶1∶15), 混合物在室温下搅拌1 min, 后静置24 h, 获得的样品命名为OLA-TDPA-PNCs. 为了对比配体的影响, 其他实验条件不变, 仅在CsPbBr3 NCs甲苯溶液中加入等物质的量的单一TDPA配体和单一OLA配体, 样品分别命名为TDPA-PNCs和OLA-PNCs. 然后加入3 mL的乙酸乙酯, 在7000 r/min下离心4 min后倒掉上清液, 收集所得沉淀物, 将其重新分散在甲苯中进行进一步表征.

    采用 X 射线衍射仪(XRD, 德国布鲁克, D8 discover)对样品的晶体结构表征; 采用透射电子显微镜(TEM, 美国, FEI Talos F200x) 进行表面形貌表征; 通过紫外-可见分光光度计(UV-vis, 日本岛津, UV-2700)测量样品的吸收光谱; 利用稳态荧光测试系统(PL, 美国, Maya 2000Pro)测量纳米晶的稳态荧光光谱; 采用瞬态稳态荧光光谱仪(英国爱丁堡, FLS1000)测得荧光寿命和荧光量子产率(PL QY) ; 利用傅里叶变换红外光谱仪(FTIR, 德国布鲁克, VERTEX 70) 进行红外光谱测试; 采用X射线光电子能谱仪(XPS, 美国赛默飞, ESCALAB 250Xi)测试得到XPS图谱.

    本文利用配体辅助再沉淀(ligand-assisted reprecipitation, LARP)法以OA和OLA为表面配体合成CsPbBr3 纳米晶. 合成的原始溶液用乙酸乙酯洗涤去除多余的配体和反应副产物, 干燥后再分散在甲苯相中获得CsPbBr3 NCs, 紧接着在室温下引入TDPA与OLA的混合配体进行后处理, 获得OLA-TDPA-PNCs.

    图1为 CsPbBr3 NCs和OLA-TDPA-PNCs的XRD图谱, CsPbBr3 NCs和OLA-TDPA-PNCs在相同的衍射角上出现了衍射峰, 其特征峰位于2θ = 15.2°, 21.4°, 30.4°, 34.2°和37.6°, 分别对应于单斜相CsPbBr3 NCs的(001), (100), (200), (120)和(211)衍射面. 而OLA-TDPA-PNCs样品, 除了存在上述的衍射峰外, 在2θ = 12.8°, 22.4°, 25.6°, 27.7°, 28.8°, 31.2°和39.1°处还出现了新的衍射峰, 与标准PDF卡片进行比对, 发现这些峰归属于六方相的Cs4PbBr6 NCs的特征衍射峰, 分别对应于(110), (113), (300), (024), (131), (223)和(134)的衍射面. 采用面积法计算出Cs4PbBr6 NCs的相含量占总相的8%. 总的来说, XRD图谱的结果确定了OLA-TDPA-PNCs样品存在两种不同的相结构, 分别为单斜相的CsPbBr3 NCs和六方相的Cs4PbBr6 NCs. 而混合配体的存在诱导了Cs4PbBr6 NCs的生成.

    图 1 CsPbBr3 NCs和OLA-TDPA-PNCs的 X 射线衍射图\r\nFig. 1. X-ray diffraction patterns of CsPbBr3 NCs and OLA-TDPA-PNCs.
    图 1  CsPbBr3 NCs和OLA-TDPA-PNCs的 X 射线衍射图
    Fig. 1.  X-ray diffraction patterns of CsPbBr3 NCs and OLA-TDPA-PNCs.

    为了探究OLA-TDPA混合配体对CsPbBr3 NCs的形貌和尺寸影响, 利用TEM对所得纳米晶样品进行了表征, 结果如图2所示. 从图2(a)可以看出, CsPbBr3 NCs的主要形貌为纳米立方体, 其平均尺寸在16 nm左右(见补充材料图S1 (online)). 图2(b)所示为CsPbBr3 NCs的高分辨透射电子显微镜图(HRTEM), 其晶格条纹间距为0.29 nm, 对应于纳米晶的(200)晶面.

    图 2 CsPbBr3 NCs的TEM图像(a)及其对应的HRTEM图(b); OLA-TDPA-PNCs 的TEM图像(c)及其对应的HRTEM图(d)和(e)\r\nFig. 2. TEM image of CsPbBr3 NCs (a) and the corresponding HRTEM image (b); TEM image of OLA-TDPA-PNCs (c) and the corresponding HRTEM images (d) and (e).
    图 2  CsPbBr3 NCs的TEM图像(a)及其对应的HRTEM图(b); OLA-TDPA-PNCs 的TEM图像(c)及其对应的HRTEM图(d)和(e)
    Fig. 2.  TEM image of CsPbBr3 NCs (a) and the corresponding HRTEM image (b); TEM image of OLA-TDPA-PNCs (c) and the corresponding HRTEM images (d) and (e).

    当加入OLA-TDPA配体后, OLA-TDPA-PNCs样品中出现了类球形形状纳米晶(如图2(c)所示), 平均尺寸略有增大, 主要集中在19 nm左右(见补充材料图S2 (online)). 通过图2(d)的HRTEM结果显示, 球形纳米晶的晶格条纹间距为0.29 nm, 与CsPbBr3 NCs的(200)晶面相一致, 说明这些纳米晶源于CsPbBr3. 而形貌从立方块转变为类球形, 主要是由于双配体的出现对纳米晶表面进行了刻蚀, 且优先刻蚀溶解立方块的棱角所致[27]. OLA-TDPA-PNCs样品中还出现了尺寸约为130 nm、且具有六边形形状的纳米晶(如图2(c)所示). 据文献[28]报道, 六边形的纳米晶为Cs4PbBr6 NCs. 为了进一步验证, 对六边形纳米晶进行了HRTEM测试, 如图2(e)所示. 图中显示, 六边形纳米晶的晶面间距为0.68 nm, 与Cs4PbBr6 NCs的(110)晶面相一致. 在OLA-TDPA-PNCs样品中还出现了一些小黑点, 经测量小黑点的尺寸为3.53 nm, 晶面间距为0.29 nm, 如补充材料图S3 (online)所示. 据文献[29]报道, 这些小黑点很可能源于反应产物PbBr2. TEM结果表明, OLA-TDPA-PNCs样品中存在两种不同的相结构, 与XRD结果相一致. 说明通过配体后处理获得了CsPbBr3和Cs4PbBr6 NCs双相混合的纳米晶.

    采用紫外-可见分光光度计(UV-vis)、稳态荧光光谱仪(PL)、PLQY和瞬态荧光光谱仪对OLA-TDPA-PNCs样品的光学性质进行了表征, 如图3所示. 图3(a)显示了CsPbBr3 NCs和OLA-TDPA-PNCs分别在日光下和紫外灯照下的荧光发射实物照片. 在普通日光照射下, CsPbBr3 NCs溶液的颜色略偏黄, 而OLA-TDPA-PNCs的溶液颜色更加翠绿; 当在紫外灯照射下, OLA-TDPA-PNCs的荧光颜色相比CsPbBr3 NCs要更加的刺眼, 说明荧光强度很高. 图3(b)的PL实验表明, CsPbBr3 NCs的荧光发射峰位于516 nm处, 半高峰宽(FWHM)为22 nm; 相比而言, OLA-TDPA-PNCs的荧光发射峰位略有红移, 位于517 nm, FWHM值也有所下降, 为20.6 nm (图3(b)); 此外还发现, 与CsPbBr3 NCs相比, OLA-TDPA-PNCs的荧光强度提高了2.7倍. 从溶液态下样品的绝对荧光量子效率(photoluminescence quantum yield, PLQY)测试也发现, OLA-TDPA-PNCs样品的绝对PLQY值从15%(CsPbBr3 NCs)显著提高到78%. 为了明确荧光强度和PLQY的显著提升与添加配体的关系, 在CsPbBr3 NCs中分别加入单一的OLA和TDPA(分别记为OLA-PNCs和TDPA-PNCs), 样品的紫外吸收(UV-vis)光谱图和荧光发射(PL)图谱如补充材料图S4(a)和S4(b) (online)所示. 从图S4(a)可知, CsPbBr3 NCs 在504 nm左右出现了带边吸收峰, 该信号为CsPbBr3 NCs的特征吸收. 对比发现, 分别在CsPbBr3 NCs中单独引入OLA配体和TDPA配体并没有影响相结构, 样品仍保持单斜相, 而同时添加OLA和TDPA混合配体后, 除了在504 nm左右出现明显的CsPbBr3 NCs吸收信号外, 在315 nm处出现了新的吸收峰, 该信号的出现表明样品中存在一定量的Cs4PbBr6 NCs[30](图3(c)), 现象与XRD和TEM的结果相一致. 此外, OLA和TDPA这两种配体的单独出现对CsPbBr3 NCs的荧光强度和PLQY影响行为明显不同, 如补充材料图S4(b) (online)所示, OLA的出现会使得CsPbBr3 NCs的荧光强度稍显增强, 同时PLQY提高了39%; 而TDPA的引入会导致荧光强度明显下降, 同时PLQY下降了40%. 因此实验表明, 只有两种配体同时存在才能显著提高钙钛矿纳米晶的荧光强度和PLQY值.

    图 3 (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)\r\nFig. 3. (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.
    图 3  (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)
    Fig. 3.  (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.

    为了探讨OLA-TDPA配体引入后纳米晶荧光量子产率提高的原因, 采用瞬态荧光光谱仪对CsPbBr3 NCs和OLA-TDPA-PNCs进行表征, 获得了时间分辨PL衰减曲线, 结果如图3(d)所示. 通过三指数函数拟合了TRPL衰减曲线, 得到了钙钛矿纳米晶的平均PL寿命和拟合参数, 结果如表1所列. 拟合函数为[31]

    表 1  CsPbBr3 NCs和OLA-TDPA-PNCs的荧光寿命拟合
    Table 1.  Lifetime and fractional contribution of different decay channels for samples of CsPbBr3 NCs and OLA-TDPA-PNCs.
    Sampleτ1/nsτ2/nsτ3/nsKnr/(106 s–1)Kr/(106 s–1)Knr/Krτavg/nsPLQY/%
    CsPbBr3 NCs6.8342.13277.425.480.975.6515515
    OLA-TDPA-PNCs12.5679.07824.810.471.640.2947678
    下载: 导出CSV 
    | 显示表格
    I(t)=A1exp(tτ1)+A2exp(tτ2)+A3exp(tτ3), (1)

    其中I, A1, A2A3是常数; τ1代表本征激子弛豫, 与晶体内部的辐射复合相关; τ2τ3分别代表激子和声子之间的相互作用、激子和表面缺陷之间的相互作用, 与来自于表面的非辐射复合相关. 纳米晶的平均寿命可表示为

    τave=A1τ21+A2τ22+A3τ23A1τ1+A2τ2+A3τ3. (2)

    对于未经配体处理的CsPbBr3 NCs样品, 获得3个τ值, τ1, τ2τ3的对应值为6.83 ns, 42.13 ns和277.42 ns, 平均寿命为155 ns, 较长的平均寿命(10 ns)表示纳米晶的结晶质量较高, 晶界较少. 与CsPbBr3 NCs相比, OLA-TDPA混合配体的引入使得OLA-TDPA-PNCs样品的平均PL寿命延长至476 ns. 根据PLQY和平均PL寿命计算了样品的辐射复合衰减常数Kr和非辐射复合衰减常数Knr[32], 如表1所示, CsPbBr3 NCs的KrKnr分别为0.97×106 s–1和5.48×106 s–1, 而OLA-TDPA-PNCs的KrKnr分别为1.64×106 s–1和0.47×106 s–1. 对比发现, 纳米晶经过双配体处理后, Kr值增大近1倍, 同时Knr值约减小10/11, 说明新配体能有效钝化表面缺陷, 阻碍载流子的非辐射复合, 从而提高纳米晶的荧光寿命.

    此外, 本工作还对OLA-PNCs和TDPA-PNCs样品进行了TRPL测试并获得了时间分辨PL衰减曲线, 需要说明的是, OLA-PNCs和TDPA-PNCs样品所使用的初始纳米晶来源于不同批次, 其TRPL结果略有不同, 因而分别放置在补充材料图S4(c)和S4(d) (online)中. 同样采用(1)式对曲线进行了三阶拟合, 拟合参数如补充材料表S1和S2 (online)所列. 与未经处理的CsPbBr3 NCs相比, TDPA-PNCs样品的平均PL寿命约降低2/3, Knr值增大3倍, 说明TDPA配体的出现导致CsPbBr3 NCs表面的非辐射复合现象更明显; 而OLA-PNCs样品的平均PL寿命约变大1倍, Knr值减小50%. 虽然OLA的出现使得纳米晶的非辐射现象有所抑制, 但与OLA-TDPA-PNCs样品相比, 当同时添加两种配体时, 钝化效果更为显著. 因此可以初步判定OLA-TDPA配体的同时引入能很好地覆盖CsPbBr3 NCs的表面缺陷, 使陷阱态密度明显减小, 有效降低非辐射复合, 显著提高纳米晶的PLQY.

    钙钛矿纳米晶的稳定性直接影响器件的质量和使用寿命. 众所周知, CsPbBr3 NCs具有离子特性, 当处于极端的光照、温度和湿度等环境时, 纳米晶体结构会遭到破坏, 严重影响纳米晶的稳定性. 所以本文通过荧光光谱仪研究了CsPbBr3 NCs和OLA-TDPA-PNCs的光稳定性、储存稳定性和热稳定性, 结果如图4所示.

    图 4 (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化\r\nFig. 4. Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).
    图 4  (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化
    Fig. 4.  Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).

    图4(a)所示为CsPbBr3 NCs和OLA-TDPA-PNCs在365 nm紫外灯的连续光照下PL相对强度随时间变化的曲线(相对PL强度等于I0/I, 其中I0指纳米晶在某一时刻的PL强度, I指纳米晶的初始PL强度). 实验发现, 在紫外灯的连续照射下, 甲苯中原始CsPbBr3 NCs的PL强度在60 min后快速下降到初始强度的19%, 而OLA-TDPA-PNCs的PL强度在60 min后仍能保持初始强度的72%, 表现出较好的光稳定性. 图4(b)所示为样品在常温下存储了1个月的PL强度变化规律图, 可以看出, OLA-TDPA-PNCs的PL强度在第10天和31天仍能分别保持在91%和88%, 且第31天后OLA-TDPA-PNCs的PL峰位和FWHM分别在517 nm和21 nm处, 几乎保持不变(补充材料图S5所示 (online)). 与此相反的是, CsPbBr3 NCs则在第1天其荧光强度就下降至初始强度的44%, 到第26天时仅有原始的14%. 结果表明, OLA-TDPA混合配体对CsPbBr3 NCs表面起到了很好的钝化作用, 使得纳米晶无论在离心前还是离心后其长期稳定性都有显著提高.

    图4(c)给出了CsPbBr3 NCs和OLA-TDPA-PNCs的PL强度与温度的依赖性. 可以看出, CsPbBr3 NCs的相对PL强度在温度从293 K升高到318 K时出现了荧光猝灭, 而OLA-TDPA-PNCs在温度升高至328 K时仍可保持初始PL强度的79%. 在经历了从293 K升高至328 K的加热-冷却5次循环后, OLA-TDPA-PNCs的相对PL强度在每次加热-冷却循环中平均下降3.64%, 如图4(d)所示. 实验表明, OLA-TDPA混合配体的引入使得CsPbBr3纳米晶能在293—328 K的温度范围时, 保持了较好的热稳定性. 此外, 还研究OLA-TDPA-PNCs在更大的工作温度范围内PL强度的变化. 当将样品进一步升温至383 K时, OLA-TDPA-PNCs样品的PL强度几乎消失, 荧光完全猝灭(补充材料图S6 (online)), 但有趣的是, 当将样品冷却至室温后, 其荧光强度又可恢复至初始的85%, PL峰位和FWHM均变化不大. OLA-TDPA-PNCs的高温稳定性可能是因为TDPA在纳米晶表面的密度增大, 而形成的保护屏障[33]. 总体而言, OLA-TDPA-PNCs样品在甲苯相中具有良好的热稳定性, 且具有较高的耐高温性.

    为了阐明OLA-TDPA-PNCs光学性能和稳定性提升的原因, 采用FTIR表征了不同配体与CsPbBr3 NCs之间的相互作用. 如图5所示, CsPbBr3 NCs样品在2854 cm–1和2919 cm–1的振动峰对应CH2的对称和不对称伸缩振动, 1573 cm–1峰对应NH2的剪切振动[34], 然而与纯OLA相比, 3350 cm–1的N—H伸缩振动峰消失, 这与文献[35]中观察到CsPbBr3 NCs表面形成(RNH3)+Br X型NC(X)2配体一致. 在TDPA-PNCs中, 出现了P=O峰(V P=O, 1213 cm–1), 在1070 cm–1 和999 cm–1出现不对称和对称的P—O—(H)峰(Vas P—O—(H)和Vs P—O—(H)), 与纯TDPA一系列的特征峰位置相同但强度较低[36,37], 说明TDPA与CsPbBr3 NCs无相互作用, TDPA-PNCs谱图中显示的是清洗过程中残留的少量纯TDPA分子.

    图 5 OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs和CsPbBr3 NCs的FTIR光谱 (a) 800—1800 cm–1; (b) 2000—3500 cm–1\r\nFig. 5. FTIR spectra of OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs and CsPbBr3 NCs at 800–1800 cm–1 (a) and (b) 2000–3500 cm–1
    图 5  OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs和CsPbBr3 NCs的FTIR光谱 (a) 800—1800 cm–1; (b) 2000—3500 cm–1
    Fig. 5.  FTIR spectra of OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs and CsPbBr3 NCs at 800–1800 cm–1 (a) and (b) 2000–3500 cm–1

    与纯TDPA特征峰相比, 混合配体OLA-TDPA谱图中V P=O(1213 cm–1)完全消失, Vas P—O—(H) (1070 cm–1)和Vs P—O—(H) (999 cm–1)峰变得非常弱, 表明OLA和TDPA之间发生了相互作用, 可能形成了PO23. 在OLA-TDPA-PNCs谱图中, V P=O信号也完全消失, 在1002—1083 cm–1 范围内出现Vas P—O—(H), Vs P—O—(H)和P—O—M峰, 表明TDPA可能与CsPbBr3 NCs表面形成了单齿或多齿磷酸盐配合物. 由FTIR结果可推断, 原始CsPbBr3 NCs表面形成了[RNH3]+-[RCOO] X型NC(X)2配体, 单独加入TDPA时无法改变酸碱平衡反应, 不能生成磷酸根, 无法成为表面配体, 而同时加入OLA和TDPA后, OLA的质子化导致形成了PO23, 形成的(RNH3)2PO3也属于X型NC(X)2配体, 其具备了表面配体交换的能力.

    CsPbBr3 NCs以及TDPA-PNCs和OLA-TDPA-PNCs的X射线光电子能谱(XPS)如图6所示. 从图6(a)的XPS全谱分析可知, 所有纳米晶除了所含的 Cs, Pb, Br 元素外, 还有相应的配体元素出现, 其中主要元素的物质的量的比如下: CsPbBr3 NCs 的Cs/Pb/Br/N 物质的量的比为1/0.94/3.9/0.58, TDPA-PNCs的Cs/Pb/Br/N/P的物质的量的比为1/1.08/2.43/0.26/0.49, OLA-TDPA-PNCs的Cs/Pb/Br/N/P的物质的量的比为1/1.48/3.24/7.7/5.75. 由表面元素可看出, OLA-TDPA-PNCs 表面的N和P元素含量明显高于CsPbBr3 NCs和TDPA-PNCs, 说明油胺和十四烷基磷酸配体含量较高. 同时, 通过对比3个样品的高分辨率XPS发现(图6(b)(f)), CsPbBr3 NCs样品中的Br 3d峰分别在68.36和69.49 eV(图6(d)), N 1s峰在401.58 eV (图6(e))(源于合成过程中的OLA配体); 单独引入TDPA配体后, Br 3d峰移至68.01和69.01 eV, N 1s峰几乎保持不变, 新出现了P 2p峰, 其位置在133.49 eV, 在纳米晶表面的含量较低, 说明该配体与表面的相互作用较弱; 而OLA-TDPA-PNCs样品中的Br 3d峰进一步移至67.57和68.54 eV, N 1s峰负移至400.79 eV, 同时P 2p峰发生了明显负移, 其位置为132.17 eV. 这3个元素的明显负移(结合能降低), 说明OLA和TDPA发生了明显相互作用, 结合FTIR分析, 进一步证明通过酸碱平衡反应生成了磷酸盐配体, 该配体属于X型配体, 与纳米晶表面具有较高的结合能, 能与原纳米晶表面的配体进行交换, 较高的配体浓度可有效钝化纳米晶表面未配位的Pb2+, 使得表面缺陷态密度明显降低, 从而提高纳米晶的光学特性 [38]. 同时, 由于新配体较为紧密的覆盖在纳米晶表面, 能较好地保护纳米晶不与光、热、水等接触, 显著提高纳米晶的稳定性. 此外, 生成的少量六方相Cs4PbBr6 NCs属于零维纳米晶, 也具有较好的稳定性, 对混合纳米晶的稳定性提升也起到促进作用[39].

    图 6 OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱\r\nFig. 6. Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).
    图 6  OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱
    Fig. 6.  Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).

    采用紫外吸收光谱和荧光光谱仪实时跟踪监测了CsPbBr3纳米晶原液在OLA-TDPA混合配体后处理过程中的变化情况, 结果如图7所示. 在CsPbBr3 NCs甲苯溶液中注入OLA-TDPA混合配体1 h内(图7(a)), OLA-TDPA-PNCs的吸光度在整个光谱范围内快速下降, 位于320 nm的吸收峰逐渐宽化, 而源于Cs4PbBr6 NCs的313 nm左右的特征峰并未出现. 同时位于516 nm的CsPbBr3 NCs的荧光强度逐渐提升约3倍, 而峰位仅有轻微的红移, FWHM由初始的22 nm下降至20.6 nm. 说明在此阶段OLA-TDPA混合配体与原有纳米晶表面的配体进行交换, 交换后的新配体含量较高且与纳米晶表面的Pb2+结合较为紧密, 能有效钝化纳米晶的表面缺陷, 降低缺陷态密度. 同时, 新配体与PbBr2的强相互作用, 使PbBr2脱离CsPbBr3 NCs, 从而导致六方相Cs4PbBr6 NCs的逐渐形成, 然而在此阶段, Cs4PbBr6 NCs的浓度较低并未被探测到[40]. 随着反应的进一步进行, 504 nm处的CsPbBr3 NCs吸收强度变化不大, 对应于[PbBr3] 基团的320 nm左右的峰完全消失, 取而代之的是315 nm处的吸收峰, 此吸收峰在2 d时强度不再变化, 说明六方相Cs4PbBr6 NCs已完全生成. 从图6(b)的PL光谱可知, Cs4PbBr6 NCs的生成并未导致荧光强度明显下降. 最终使得OLA-TDPA-PNCs成为CsPbBr3和Cs4PbBr6 NCs双相共存的纳米晶.

    图 7 OLA-TDPA- PNCs随时间变化的光学监测 (a) UV-vis吸收光谱; (b)荧光光谱, 内插图为纳米晶在1—96 h间的荧光光谱图\r\nFig. 7. Optical monitoring of the OLA-TDPA- PNCs over time: (a) UV-vis absorption spectra; (b) PL spectra, inset shows the PL spectra of OLA-TDPA- PNCs between 1 and 96 h.
    图 7  OLA-TDPA- PNCs随时间变化的光学监测 (a) UV-vis吸收光谱; (b)荧光光谱, 内插图为纳米晶在1—96 h间的荧光光谱图
    Fig. 7.  Optical monitoring of the OLA-TDPA- PNCs over time: (a) UV-vis absorption spectra; (b) PL spectra, inset shows the PL spectra of OLA-TDPA- PNCs between 1 and 96 h.

    通过在CsPbBr3 NCs后处理过程中添加OLA-TDPA混合配体获得了高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶. 混合相纳米晶的形成经历了表面钝化/溶解和重结晶生成混合相钙钛矿纳米晶两个阶段. 在第1阶段(≤1 h), OLA配体与TDPA配体混合后形成(RNH3)2PO3 X型配体, 然后与CsPbBr3 NCs表面的原配体相互交换, 交换过程中与Pb2+发生强相互作用, 交换后的新配体密度较高且与纳米晶表面结合较为紧密, 使得纳米晶表面的缺陷有效钝化, 从而使得OLA-TDPA-PNCs的荧光强度达到最高, 随着反应的进行, 强相互作用使得部分PbBr2从晶体表面溶解下来, 逐渐转变为[PbBr4]2–中间态; 在第2阶段, 当体系中中间态浓度较高时, 逐渐生成Cs4PbBr6 NCs. 由于较好的表面缺陷钝化和生成了CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶, OLA-TDPA-PNCs的光学性质和稳定性都有了显著提高, 与未处理的CsPbBr3 NCs相比, PLQY从15%提高到78%, 荧光寿命延长至476 ns, 在普通环境下储存1个月其荧光强度仍保持89%, 以及在经历298—328 K的5次加热-冷却循环后良好的热稳定性和较高的抗高温性.

    [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • 图 1  CsPbBr3 NCs和OLA-TDPA-PNCs的 X 射线衍射图

    Figure 1.  X-ray diffraction patterns of CsPbBr3 NCs and OLA-TDPA-PNCs.

    图 2  CsPbBr3 NCs的TEM图像(a)及其对应的HRTEM图(b); OLA-TDPA-PNCs 的TEM图像(c)及其对应的HRTEM图(d)和(e)

    Figure 2.  TEM image of CsPbBr3 NCs (a) and the corresponding HRTEM image (b); TEM image of OLA-TDPA-PNCs (c) and the corresponding HRTEM images (d) and (e).

    图 3  (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)

    Figure 3.  (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.

    图 4  (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化

    Figure 4.  Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).

    图 5  OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs和CsPbBr3 NCs的FTIR光谱 (a) 800—1800 cm–1; (b) 2000—3500 cm–1

    Figure 5.  FTIR spectra of OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs and CsPbBr3 NCs at 800–1800 cm–1 (a) and (b) 2000–3500 cm–1

    图 6  OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱

    Figure 6.  Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).

    图 7  OLA-TDPA- PNCs随时间变化的光学监测 (a) UV-vis吸收光谱; (b)荧光光谱, 内插图为纳米晶在1—96 h间的荧光光谱图

    Figure 7.  Optical monitoring of the OLA-TDPA- PNCs over time: (a) UV-vis absorption spectra; (b) PL spectra, inset shows the PL spectra of OLA-TDPA- PNCs between 1 and 96 h.

    表 1  CsPbBr3 NCs和OLA-TDPA-PNCs的荧光寿命拟合

    Table 1.  Lifetime and fractional contribution of different decay channels for samples of CsPbBr3 NCs and OLA-TDPA-PNCs.

    Sampleτ1/nsτ2/nsτ3/nsKnr/(106 s–1)Kr/(106 s–1)Knr/Krτavg/nsPLQY/%
    CsPbBr3 NCs6.8342.13277.425.480.975.6515515
    OLA-TDPA-PNCs12.5679.07824.810.471.640.2947678
    DownLoad: CSV
  • [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 物理学报 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] Chen Xue-Lian, Shen Yan-Bing, Yuan Zhi-Cong, Li Kai-Rui, Pan Xi-Qiang. Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process. Acta Physica Sinica, 2024, 73(9): 096801. doi: 10.7498/aps.73.20240247
    [4] Meng Jing, Gao Bo-Wen. Photovoltaic performance of novel Perovskite/organic integrated solar cells with high efficiency and high stability. Acta Physica Sinica, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [6] Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng. Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector. Acta Physica Sinica, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [7] Zhao Song, Zhou Hua, Wang Shu-Ying, Han Fei, Jiang Si-Han, Shen Xiang-Qian. Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] Chen Xue-Lian, Ju Bo, Jiao Hu-Po, Li Yan, Zhong Yu-Jie. Preparation of CsPbBr3 perovskite nanocrystals with controllable morphology and in-situ photoluminescence of formation kinetics. Acta Physica Sinica, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [9] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [10] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [11] Design of high efficiency perovskite/silicon tandem solar cells based on the plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211585
    [12] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [13] Liu Xiao-Bing, Guo Ruo-Tong, Zhong Yu-Xuan, Zhao Li-Xin, Shi Hao-Nan, Liu Li-Juan. Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals. Acta Physica Sinica, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [14] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [15] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [16] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun. Theoretical study on the stability and photoelectric properties of APbI3 perovskite. Acta Physica Sinica, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [18] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [20] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
  • supplement 097801-20230066补充材料.pdf supplement
Metrics
  • Abstract views:  5806
  • PDF Downloads:  132
Publishing process
  • Received Date:  12 January 2023
  • Accepted Date:  22 March 2023
  • Available Online:  06 April 2023
  • Published Online:  05 May 2023

/

返回文章
返回