Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of flexible energy storage dielectric materials with sandwiched structure

Li Yu-Fan Xue Wen-Qing Li Yu-Chao Zhan Yan-Hu Xie Qian Li Yan-Kai Zha Jun-Wei

Citation:

Research progress of flexible energy storage dielectric materials with sandwiched structure

Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei
PDF
HTML
Get Citation
  • Polymer dielectric materials show wide applications in smart power grids, new energy vehicles, aerospace, and national defense technologies due to the ultra-high power density, large breakdown strength, flexibility, easy processing, and self-healing characteristics. With the rapid development of integration, miniaturization and lightweight production of electronic devices, it is required to develop such a storage and transportation dielectric system with larger energy storage density, higher charge and discharge efficiency, good thermostability and being environmentally friendly. However, the contradiction between dielectric constant and breakdown strength of dielectric materials is the key factor and bottleneck to obtain a high performance dielectric material. It is accepted that controlling charge distribution and inhibiting charge carrier injection are important to improve the energy storage characteristics of polymer dielectrics. In recent years, the materials with sandwiched or stacking structures have demonstrated outstanding advantages in inhibiting charge injection and promoting polarization, allowing polymer dielectrics to have increased permittivity and breakdown strength at the same time. Therefore, from the perspectives of material composition, structural design, and preparation methods, this study reviews the research progress of polymer dielectric films with sandwiched structure in improving the energy storage performance. The influence of dielectric polarization, charge distribution, charge injection, interfacial barrier and electrical dendrite growth on the energy storage performance and the synergistic enhancement mechanisms in such sandwich-structured dielectric materials are systematically summarized, showing good development and vast application prospects.In brief, introducing easy polarization, wide-gap and deep-trap nanofillers has greater designability and regulation in the dielectric and breakdown properties. In addition, using the hard layer as the outer layer can reduce charge injection more effectively, resulting in a high breakdown resistance performance that is easy to achieve. The sandwiched structure design also possesses advantages over other methods in maintaining good flexibility and dielectric stability of dielectric materials, thus having become a hot-topic research area in recent years. In the future, it is necessary to combine low conductivity and high thermal conductivity of dielectric polymers to realize high temperature energy storage and efficiency. Researches on recyclable, self-repairing sandwiched insulating films are good for the service life and safety of electronic components and will further expand the application scope of dielectric polymers. Finally, effective evaluation of dielectric with sandwiched structure and energy storage performances through simulation and theoretical modeling is very helpful in revealing the breakdown mechanism and thermal failure mechanism, and also in theoretically guiding the design of polymer dielectric materials.
      Corresponding author: Li Yu-Chao, liyuchao@lcu.edu.cn ; Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52177020, 52277022) and the College Student Innovation and Entrepreneurship Training Program, China (Grant No. CXCY2022184).
    [1]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [2]

    Feng Q K, Zhong S L, Pei J Y, Zhao Y, Zhang D L, Liu DF, Zhang Y X, Dang Z M 2022 Chem. Rev. 122 3820Google Scholar

    [3]

    成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar

    Cheng S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar

    [4]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [5]

    郑明胜, 查俊伟, 党智敏 2017 电工技术学报 32 37Google Scholar

    Zheng M S, Zha J W, Dang Z M 2017 Trans. Chin. Electrotechn. Soc. 32 37Google Scholar

    [6]

    Yang Z J, Yue D, Yao Y H, Li J L, Chi Q G, Chen Q G, Min D M, Feng Y 2022 Polymers 14 1160Google Scholar

    [7]

    Li Z J, Treich G M, Tefferi M, Wu C, Nasreen S, Scheirey S K, Ramprasad R, Sotzingc G A, Cao Y 2019 J. Mater. Chem. A 7 15026Google Scholar

    [8]

    Hu H L, Zhang F, Luo S B, Chang W K, Yue J L, Wang C H 2020 Nano Energy 74 104844Google Scholar

    [9]

    Zhu Y F, Zhang Z B, Litt M H, Zhu L 2018 Macromolecules 51 6257Google Scholar

    [10]

    Zha J W, Zheng M S, Fan B H, Dang Z M 2021 Nano Energy 89 106438Google Scholar

    [11]

    Sessler G M 1997 IEEE Trans. Dielectr. Electr. Insul. 4 614Google Scholar

    [12]

    Wang Z, Yang L, Yang Y Z, Li Y C, Zhan Y H, Li Y K 2023 J. Liaocheng Univ. 36 67 [王振, 杨柳, 杨永志, 李玉超, 战艳虎, 李艳凯 2023 聊城大学学报 36 67

    Wang Z, Yang L, Yang Y Z, Li Y C, Zhan Y H, Li Y K 2023 J. Liaocheng Univ. 36 67 [王振, 杨柳, 杨永志, 李玉超, 战艳虎, 李艳凯 2023 聊城大学学报 36 67

    [13]

    Wei J J, Zhu L 2020 Prog. Polym. Sci. 106 101254Google Scholar

    [14]

    Chen G J, Zhang J F, Shi X Y, Peng H L, Chen X 2020 IET Nanodielectrics 3 81Google Scholar

    [15]

    Yang C, Hao S J, Dai S L, Zhang X Y 2017 Carbon 117 301Google Scholar

    [16]

    Liu F H, Li Q, Li Z Y, Dong L J, Xiong C X, Wang Q 2018 Composites Part A 109 597Google Scholar

    [17]

    沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar

    [18]

    Li C S, Chen G J, Qiu X L, Lou Q W, Gao X L 2021 AIP Adv. 11 065227Google Scholar

    [19]

    Yin L, Wang Q, Zhao H, Bai J B 2023 ACS Appl. Mater. Interfaces 15 16079Google Scholar

    [20]

    Wang L, Luo H, Zhou X F, Yuan X, Zhou K C, Zhang D 2019 Composites Part A 117 369-376Google Scholar

    [21]

    Chen J, Wang Y F, Yuan Q B, Xu X W, Niu Y J, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [22]

    Guo R, Luo H, Yan M Y, Zhou X F, Zhou C K, Zhang D 2021 Nano Energy 79 105412Google Scholar

    [23]

    Bai H R, Zhu K, Wang Z, Shen B, Zhai J W 2021 Adv. Funct. Mater. 31 2102646Google Scholar

    [24]

    Wang R, Xie C Z, Luo S K, Xu H S, Gou B, Zhou J G, Yang H 2021 ACS Appl. Energy Mater. 4 6135Google Scholar

    [25]

    Dong J F, Hu R C, Xu X W, Chen J, Niu Y J, Wang F, Hao J Y, Wu K, Wang Q, Wang H 2021 Adv. Funct. Mater. 31 2102644Google Scholar

    [26]

    Wei W T, Huang C, Zhang L Y, Wang Y, Xu M Y, Deng Y 2020 Chem. Eng. J. 394 125052Google Scholar

    [27]

    Sun Z Q, Shi B F, Zhang T R, Yang W J, Wang J P, Zhang L X, Xue D Z, Wang Z P, Kang F, Zhang X X 2022 ACS Appl. Energy Mater. 5 8211Google Scholar

    [28]

    Feng M J, Zhang T D, Song C H, Zhang C H, Zhang Y, Feng Y, Chi Q G, Chen Q G, Lei Q Q 2020 Polymers (Basel) 12 1972Google Scholar

    [29]

    Li X J, Yang Y, Wang Y P, Pang S T, Shi J J, Ma X C, Zhu K J 2021 RSC Adv. 11 15177Google Scholar

    [30]

    Wang C, He G H, Chen S H, Luo H, Yang Y, Zhang D 2022 J. Mater. Chem. A 10 9103Google Scholar

    [31]

    Ahmad A, Liu G H, Cao S M, Liu X P, Luo J P, Han L, Tong H, Xu J 2023 Macromol. Rapid Commun. 44 2200568.Google Scholar

    [32]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H, 2019 J. Mater. Chem. A 7 3729Google Scholar

    [33]

    Wang C, He G H, Chen S H, Zhai D 2021 J. Mater. Chem. A 9 8674Google Scholar

    [34]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2018 J. Mater. Chem. A 6 24367Google Scholar

    [35]

    Feng K Q, Zhang Y X, Liu D F, Song Y H, Huang L, Dang Z M 2022 Mater. Today Energy 29 101132Google Scholar

    [36]

    Zhang W C, Guan F, Jiang M, Li Y P, Zhu C C, Yue D, Li J L, Liu X X, Feng Y 2022 Composites Part A 159 107018Google Scholar

    [37]

    Zhu K, Jiang P K, Huang X Y 2018 IET Nanodielectrics 1 127Google Scholar

    [38]

    Zhang Y, Chi Q G, Liu L Z, Zhang C H, Chen C, Wang X, Lei Q Q 2017 APL Mater. 5 076109Google Scholar

    [39]

    Wang Y F, Jin C, Yan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [40]

    Chen F J, Zhou Y J, Guo J M, Sun S, Zhao Y T, Yang Y J, Xu J H 2020 RSC Adv. 10 2295Google Scholar

    [41]

    Meng G D, She J Y, Wang C L, Wang W K, Pan C, Cheng Y H 2022 Front. Chem. 10 910305Google Scholar

    [42]

    Liang X W, Yu X C, Lü L L, Zhao T, Luo S B, Yu S H, Sun R, Wong C P, Zhu P L 2020 Nano Energy 68 104351Google Scholar

    [43]

    Liu G, Zhang T D, Feng Y, Zhang Y Q, Zhang C H, Zhang Y, Wang X B, Chi Q G, Chen Q G, Lei Q Q 2020 Chem. Eng. J. 389 124443Google Scholar

    [44]

    Cheng L, Liu K, Gao H Y, Fan Z M, Takesue N, Deng H M, Zhang H B, Hu Y M, Tan H, Yan Z L, Liu Y 2022 Chem. Eng. J. 435 135064Google Scholar

    [45]

    Guo Y T, Wu S H, Liu S H, Xu J, Pawlikowska E, Szafran M, Rydosz A, Gao F 2022 Mater. Lett. 306 130910Google Scholar

    [46]

    Chen J, Li Y, Wang Y F, Dong J F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2020 Compos. Sci. Technol. 186 107912Google Scholar

    [47]

    迟庆国, 陈辰, 张月, 张昌海, 王暄, 雷清泉 2017 高电压技术 43 2204Google Scholar

    Chi Q G, Chen C, Zhang Y, Zhang C H, Wang X, Lei Q Q 2017 High Volt. Eng. 43 2204Google Scholar

    [48]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [49]

    Marwat M A, Xie B, Zhu Y W, Fan P Y, Ma W G, Liu H M, Ashtar M, Xiao J Z, Salamon D, Samart C, Zhang H B 2019 Composites Part A 121 115Google Scholar

    [50]

    Marwat M A, Yasar M, Ma W G, Fan P Y, Liu K, Lu D J, Tian Y, Samart C, Ye B H, Zhang H B 2020 ACS Appl. Energy Mater. 3 6591Google Scholar

    [51]

    Yin L, Zhao H, Wang Y Z, Zhao S N, Ding X Y, Wang Q, Wei X P, Miao Z Y, Yang F, Yin X Q, Bai J B 2022 ACS Appl. Mater. Interfaces 14 39311Google Scholar

    [52]

    Qiu J Y, Weng L, Zhang X R, Su Y 2022 IET Nanodielectrics 5 85Google Scholar

    [53]

    Zhang Y, Zhang T D, Liu L Z, Chi Q G, Zhang C H, Chen Q J, Cui Y, Wang X, Lei Q Q 2018 J. Phys.C122 1500Google Scholar

    [54]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 271606292Google Scholar

    [55]

    Wang H, Wang Y, Wang B Y, Li M Q, Li M T, Wang F, Li C L, Diao C L, Lou H, Zheng H W 2022 ACS Appl. Mater. Interfaces 14 55130Google Scholar

    [56]

    Wang Z Z, Feng Z P, Tang H S, Wang J H, Cai Z M, Bi K, Hao Y A 2022 ACS Appl. Mater. Interfaces 14 42513Google Scholar

    [57]

    Li W X, Yang T N, Liu C S, Huang Y H, Chen C X, Pan H, Xie G Z, Tai H L, Jinag Y D, Wu Y J, Kang Z, Chen L Q, Su Y J, Hong Z J 2022 Adv Sci. 9 2105550Google Scholar

    [58]

    Shen Z H, Wang J J, Jiang J Y, Huang S R, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [59]

    Shen Y, Hua Y H, Chen W W, Wang J J, Guan Y H, Dua J W, Zhang X, Ma J, Lia M, Lin Y H, Chen L Q, Nan C W 2015 Nano Energy 18 176Google Scholar

    [60]

    Zhang K Y, Ma Z Y, Fu Q, Deng H 2022 Mater. Today Energy 29 101093Google Scholar

    [61]

    Xie H R, Wang L, Gao X, Lou H, Liu L H, Zhang D 2020 ACS Omega 5 32660Google Scholar

    [62]

    Zhang Y J, Yang H B, Dang Z N, Zhan S L, Sun C, Hu G L, Lin Y, Yuan Q B 2020 ACS Appl. Mater. Interfaces 12 22137Google Scholar

    [63]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Energy Storage Mater. 18 213Google Scholar

    [64]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [65]

    Wang Y F, Li Y, Wang L X, Yuan Q B, Chen J, Niu Y J, Xu X W, Wang Q, Wang H 2020 Energy Storage Mater. 24 626Google Scholar

    [66]

    Zhang Y, Chi Q G, Liu L Z, Zhang T D, Zhang T D, Zhang C H, Chen Q G, Wang X, Lei Q Q 2018 ACS Appl. Energy Mater. 1 6320Google Scholar

    [67]

    Sun L, Shi Z C, He B L, Wang H L, Liu S, Huang M H, Shi J, Dastan D, Wang H 2021 Adv. Funct. Mater. 31 2100280Google Scholar

    [68]

    Cui Y, Zhang T D, Feng Y, Zhang C H, Chi Q G, Zhang Y Q, Chen Q G, Wang X, Lei Q Q 2019 Composites Part B 177 107429Google Scholar

    [69]

    Lin B, Chen G D, He F A, Li Y, Yang Y, Shi B, Feng F R, Chen S Y, Lam K H 2023 Diamond Relat. Mater. 131 109556Google Scholar

    [70]

    Hu J, Zhang S F, Tang B T 2021 Energy Storage Mater. 37 530Google Scholar

    [71]

    Jiang J, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [72]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [73]

    Hassan Y A, Hu H L 2020 Composites Part A 138 106064Google Scholar

    [74]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

    [75]

    Wan B Q, Zheng M S, Yang X, Dong X D, Li Y C, Mai Y W, Chen G, Zha J W 2023 Energy Environ. Mater. 6 e12427Google Scholar

  • 图 1  (a) 介质材料极化储能过程[5]; (b) 介电材料的D-E曲图[6]

    Figure 1.  Schematic diagram of (a) polarization[5] and (b) D-E loop of dielectric materials[6].

    图 2  BN和TiO2协同提升三明治结构电介质材料储能机理[19]

    Figure 2.  Synergistic enhancement of energy storage mechanism of sandwich structure composite by BN and TiO2[19].

    图 3  三明治结构 (a) 全有机P(VDF-HFP)-PMMA-P(VDF-HFP)薄膜[21]; (b) 有机/无机PVDF-BT/PVDF-PVDF薄膜[22]; (c) BN, Sr2Nb2O7协同增强PMMA/PVDF电介质薄膜[23]; (d) PI-Al2O3-PI薄膜示意图[25]

    Figure 3.  Diagram of sandwich structure: (a) All-organic composite film of P(VDF-HFP)-PMMA-P(VDF-HFP) [21], (b) organic/inorganic composite film of PVDF-BT/PVDF-PVDF[22], (c) BN, Sr2Nb2O7 synergistically reinforced PMMA/PVDF dielectric film[23] and (d) PI-Al2O3-PI composite film[25].

    图 4  (a) 对称型A-B-A和B-A-B三明治结构电介质材料示意图; (b) 不同结构电介质材料的储能密度[45]; (c) 相场模拟不同结构复合电介质材料的失效概率与场强关系[59]

    Figure 4.  (a) Schematics of symmetric A-B-A and B-A-B types of sandwich structure; (b) different energy storage density [45] and (c) failure probability versus electric field [59] of A-B-A and B-A-B types of structure.

    图 5  (a) 五层结构PVDF-SNBT/PVDF-PVDF复合薄膜结构示意图[62]; (b) 对称梯度结构BZCT/PVDF多层膜材料示意图[66]; (c) 非对称梯度结构PEI-PEI/P(VDF-HFP)-P(VDF-HFP)薄膜示意图[67]

    Figure 5.  Schematic of (a) a five-layer dielectric composite film[62], (b) a symmetrically gradient dielectric film[66] , and (c) an asymmetrically gradient PEI-PEI/P(VDF-HFP)-P(VDF-HFP) film[67].

    图 6  (a) 流延工艺[21]及其(b) PMMA/PVDF-BCZT/PVDF-PMMA/PVDF薄膜扫描电镜图 [68]; (c) 旋涂工艺及其(d) BT@HPC/PVDF-PVDF-BT@HPC/PVDF薄膜扫描电镜图[42]

    Figure 6.  Sandwich structure composite films prepared by (a) flow casting[21] and (b) representative SEM image of PMMA/PVDF-BCZT/PVDF-PMMA/PVDF dielectric film [68], (c) spin coating process and (d) representative SEM image of BT@HPC/PVDF-PVDF-BT@HPC/PVDF film [42].

    图 7  (a) 热压法制备FPE-P(VDF-HFP)-FPE三明治结构薄膜的制备过程和扫描电镜图[36]; (b) 静电纺丝制备P(VDF-HFP)和BT/P(VDF-HFP)多层膜结构及其扫描电镜图 [71]

    Figure 7.  (a) Hot-compression molding process of FPE-P(VDF-HFP)-FPE sandwich film and SEM image[36]; (b) electrostatic spinning preparation of P(VDF-HFP) and BT/P(VDF-HFP) multilayer film and its SEM image[71].

    表 1  不同材料构成A-B-A型三明治电介质材料的介电性能

    Table 1.  Dielectric properties of A-B-A type sandwich dielectric materials

    材料构成A层(含量, 厚度)B层(含量, 厚度)A-B-A三明治(25 ℃, 1 kHz)
    $\varepsilon_{\mathrm{r}} $tanδE/(MV·m–1)U/(J·cm–3)η/%制备方法U/U基体文献
    全有机复合PVDF (3 μm)P(VDF-TrFE-CTFE) (3 μm)12.060.3559920.8660溶液涂膜1.3[20]
    P(VDF-HFP) (6.5 μm)PMMA (6 μm)70.0344020.384溶液浇筑1.3[21]
    PVDF (4 μm)P(VDF-TrFE)-PVDF (70% PVDF, volume percent, 10 μm)120.0358223.465.5溶液浇筑1.5[26]
    P(VH-HFP) (3 μm)P(VDF-HFP)-PMMA (25% PMMA, weight percent, 4 μm)90.256802874热压、拉伸1.8[27]
    P(VDF-TrFE-CFE) (4 μm)PMMA (13 μm)50.05399.19.778静电纺丝、热压1.7[28]
    P(VDF-TrFE-CFE) (2 μm)PVDF (2 μm)10.20.02550.918.360溶液涂覆2.44[29]
    PMMA-P(VDF-TrFE-CFE) (20% PMMA, weight percent, 4 μm)DE-P(VDF-TrFE-CFE) (15% DE, weight percent, 4 μm)70.0579020.166溶液浇筑2.5[30]
    Parylene (1 μm)PI (17 μm)5.040.434604.7244.8CVD2.9[31]
    DE-P(VDF-HFP) (30% DE, weight percent, 2.5 μm)PMMA (14.5μm)30011.889溶液浇筑1.45[32]
    PEI (4.5 μm)P(VDF-TrFE-CFE) (3 μm)~70.03504881溶液浇筑2.6[33]
    P(VDF-TrFE-CFE) (3.4 μm)PEI (6.7 μm)~50.01275480溶液浇筑1.3[33]
    PVDF (6.5 μm)DE (4 μm)10.40.0343820.9272溶液浇筑1.3[34]
    PET (2 μm)P(VDF-HFP) (5 μm)4.50.01583.28.286.4溶液浇筑1.17[35]
    Fluorene polyester (7 μm)P(VDF-HFP) (4 μm)40.014564886.7溶液浇筑、热压1.1[36]
    PMMA (4 μm)P(VDF-TrFE-CFE) (9 μm)4.50.057.0378溶液浇筑1.55[37]
    PVDF (9 μm)P(VDF-TrFE-CFE) (16 μm)160.034088.760溶液浇筑、热压2[38]
    有机/无机杂化BN/PVDF (2%, weight
    percent, 4 μm)
    TiO2/PVDF (3%, weight
    percent, 4 μm)
    11.420.03369.910.1756溶液浇筑、热压5[19]
    PVDF (3 μm)BT@SiO2@PDA/PVDF (3 μm)120.02363415.364溶液浇筑3.85[24]
    BT/PVDF (3%, weight
    percent, 4 μm)
    PVDF (4 μm)13.3<0.0255051560溶液浇筑1.6[22]
    PVDF (4 μm)BT/PVDF (3%, 4 μm)12.9<0.025519.719.168.6溶液浇筑2.3[22]
    BT/PVDF (20%, volume
    percent, 5 μm)
    BT/PVDF (1%, volume
    percent, 10 μm)
    17.50.0547018.8溶液浇筑4.5[39]
    BT/P(VDF-HFP) (10%, weight percent, 5 μm)BNNs (3 μm)10.990.05414.768.3750溶液浇筑2.26[40]
    h-BN (70 nm)PVDF (12 μm)~9.50.024464.719.2652.2CVD、热压2.7[41]
    BT@HPC/PVDF (1%, weight percent, 5 μm)PVDF (5 μm)150.0236010.277旋涂5.1[42]
    h-BN (2 μm)PC (12 μm)3.150.0155.0180.82静电纺丝、热压1.16[43]
    P(VDF-CTFE)/PMMA (3 μm)Ag@SrTiO3/P(VDF-CTFE)
    (1.5%, weight percent, 5 μm)
    7.20.041635.424.686.3溶液浇筑6.15[44]
    PVDF (8 μm)BST/PVDF (40%, volume
    percent, 14μm)
    ~150.025230.87.5668.59溶液浇筑、热压1.89[45]
    BST/PVDF (20%, volume
    percent, 8 μm)
    PVDF (8 μm)17.30.025224.510.5472.02溶液浇筑、热压2.63[45]
    PMMA (6.6 μm)P(VDF-HPF)/GO (2%, weight percent, 12 μm)100.0128610.1777溶液浇筑6.78[46]
    BN/PVDF (8 μm)BT/PVDF (8 μm)120.023706.255溶液浇筑1.55[47]
    BT-np/PVDF (10%, volume
    percent, 3.5 μm)
    BT-nf/PVDF (2%, volume
    percent, 5.5 μm)
    10.50.0154539.72逐层流延2.43[48]
    BT/PMMA (1%, weight
    percent, 5 μm)
    BT/PMMA(9%, weight
    percent, 10 μm)
    7.150.05501.46.08溶液浇筑4.05[49]
    P(VDF-HFP) (5 μm)Ag@BN/PEI (5%, weight
    percent, 5 μm)
    5.90.0185101180热压法[50]
    PVDF (5 μm)NBT@TO/PVDF (6%, weight percent, 10 μm)120.02530415.4266.12逐层浇筑3.8[51]
    PVDF (10 μm)PPy/TiO2 (30%, weight
    percent, 20 μm)
    160.02992.6866.7静电纺丝、热压1.1[52]
    BZCT/PVDF (3 l%, volume
    percent, 10 μm)
    Fe3O4@BNNS/PVDF (5%, volume
    percent, 10 μm)
    160.033508.9溶液浇筑、热压2.3[53]
    BN/PVDF (10 %, weigh
    percent, 4 μm)
    BST/PVDF (8%, weigh
    percent, 8 μm)
    120.02558820.560溶液浇筑4[54]
    注: Na0.5Bi0.5TiO3@TiO2=NBT@TO, hollow porous carbon=HPC, BT-np (nf)= BT纳米颗粒(纳米片), Polypyrrole=PPy, 0.5 Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3=BZCT, polyacrylate elastomer=DE.
    DownLoad: CSV
  • [1]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [2]

    Feng Q K, Zhong S L, Pei J Y, Zhao Y, Zhang D L, Liu DF, Zhang Y X, Dang Z M 2022 Chem. Rev. 122 3820Google Scholar

    [3]

    成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar

    Cheng S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar

    [4]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [5]

    郑明胜, 查俊伟, 党智敏 2017 电工技术学报 32 37Google Scholar

    Zheng M S, Zha J W, Dang Z M 2017 Trans. Chin. Electrotechn. Soc. 32 37Google Scholar

    [6]

    Yang Z J, Yue D, Yao Y H, Li J L, Chi Q G, Chen Q G, Min D M, Feng Y 2022 Polymers 14 1160Google Scholar

    [7]

    Li Z J, Treich G M, Tefferi M, Wu C, Nasreen S, Scheirey S K, Ramprasad R, Sotzingc G A, Cao Y 2019 J. Mater. Chem. A 7 15026Google Scholar

    [8]

    Hu H L, Zhang F, Luo S B, Chang W K, Yue J L, Wang C H 2020 Nano Energy 74 104844Google Scholar

    [9]

    Zhu Y F, Zhang Z B, Litt M H, Zhu L 2018 Macromolecules 51 6257Google Scholar

    [10]

    Zha J W, Zheng M S, Fan B H, Dang Z M 2021 Nano Energy 89 106438Google Scholar

    [11]

    Sessler G M 1997 IEEE Trans. Dielectr. Electr. Insul. 4 614Google Scholar

    [12]

    Wang Z, Yang L, Yang Y Z, Li Y C, Zhan Y H, Li Y K 2023 J. Liaocheng Univ. 36 67 [王振, 杨柳, 杨永志, 李玉超, 战艳虎, 李艳凯 2023 聊城大学学报 36 67

    Wang Z, Yang L, Yang Y Z, Li Y C, Zhan Y H, Li Y K 2023 J. Liaocheng Univ. 36 67 [王振, 杨柳, 杨永志, 李玉超, 战艳虎, 李艳凯 2023 聊城大学学报 36 67

    [13]

    Wei J J, Zhu L 2020 Prog. Polym. Sci. 106 101254Google Scholar

    [14]

    Chen G J, Zhang J F, Shi X Y, Peng H L, Chen X 2020 IET Nanodielectrics 3 81Google Scholar

    [15]

    Yang C, Hao S J, Dai S L, Zhang X Y 2017 Carbon 117 301Google Scholar

    [16]

    Liu F H, Li Q, Li Z Y, Dong L J, Xiong C X, Wang Q 2018 Composites Part A 109 597Google Scholar

    [17]

    沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar

    [18]

    Li C S, Chen G J, Qiu X L, Lou Q W, Gao X L 2021 AIP Adv. 11 065227Google Scholar

    [19]

    Yin L, Wang Q, Zhao H, Bai J B 2023 ACS Appl. Mater. Interfaces 15 16079Google Scholar

    [20]

    Wang L, Luo H, Zhou X F, Yuan X, Zhou K C, Zhang D 2019 Composites Part A 117 369-376Google Scholar

    [21]

    Chen J, Wang Y F, Yuan Q B, Xu X W, Niu Y J, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [22]

    Guo R, Luo H, Yan M Y, Zhou X F, Zhou C K, Zhang D 2021 Nano Energy 79 105412Google Scholar

    [23]

    Bai H R, Zhu K, Wang Z, Shen B, Zhai J W 2021 Adv. Funct. Mater. 31 2102646Google Scholar

    [24]

    Wang R, Xie C Z, Luo S K, Xu H S, Gou B, Zhou J G, Yang H 2021 ACS Appl. Energy Mater. 4 6135Google Scholar

    [25]

    Dong J F, Hu R C, Xu X W, Chen J, Niu Y J, Wang F, Hao J Y, Wu K, Wang Q, Wang H 2021 Adv. Funct. Mater. 31 2102644Google Scholar

    [26]

    Wei W T, Huang C, Zhang L Y, Wang Y, Xu M Y, Deng Y 2020 Chem. Eng. J. 394 125052Google Scholar

    [27]

    Sun Z Q, Shi B F, Zhang T R, Yang W J, Wang J P, Zhang L X, Xue D Z, Wang Z P, Kang F, Zhang X X 2022 ACS Appl. Energy Mater. 5 8211Google Scholar

    [28]

    Feng M J, Zhang T D, Song C H, Zhang C H, Zhang Y, Feng Y, Chi Q G, Chen Q G, Lei Q Q 2020 Polymers (Basel) 12 1972Google Scholar

    [29]

    Li X J, Yang Y, Wang Y P, Pang S T, Shi J J, Ma X C, Zhu K J 2021 RSC Adv. 11 15177Google Scholar

    [30]

    Wang C, He G H, Chen S H, Luo H, Yang Y, Zhang D 2022 J. Mater. Chem. A 10 9103Google Scholar

    [31]

    Ahmad A, Liu G H, Cao S M, Liu X P, Luo J P, Han L, Tong H, Xu J 2023 Macromol. Rapid Commun. 44 2200568.Google Scholar

    [32]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H, 2019 J. Mater. Chem. A 7 3729Google Scholar

    [33]

    Wang C, He G H, Chen S H, Zhai D 2021 J. Mater. Chem. A 9 8674Google Scholar

    [34]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2018 J. Mater. Chem. A 6 24367Google Scholar

    [35]

    Feng K Q, Zhang Y X, Liu D F, Song Y H, Huang L, Dang Z M 2022 Mater. Today Energy 29 101132Google Scholar

    [36]

    Zhang W C, Guan F, Jiang M, Li Y P, Zhu C C, Yue D, Li J L, Liu X X, Feng Y 2022 Composites Part A 159 107018Google Scholar

    [37]

    Zhu K, Jiang P K, Huang X Y 2018 IET Nanodielectrics 1 127Google Scholar

    [38]

    Zhang Y, Chi Q G, Liu L Z, Zhang C H, Chen C, Wang X, Lei Q Q 2017 APL Mater. 5 076109Google Scholar

    [39]

    Wang Y F, Jin C, Yan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [40]

    Chen F J, Zhou Y J, Guo J M, Sun S, Zhao Y T, Yang Y J, Xu J H 2020 RSC Adv. 10 2295Google Scholar

    [41]

    Meng G D, She J Y, Wang C L, Wang W K, Pan C, Cheng Y H 2022 Front. Chem. 10 910305Google Scholar

    [42]

    Liang X W, Yu X C, Lü L L, Zhao T, Luo S B, Yu S H, Sun R, Wong C P, Zhu P L 2020 Nano Energy 68 104351Google Scholar

    [43]

    Liu G, Zhang T D, Feng Y, Zhang Y Q, Zhang C H, Zhang Y, Wang X B, Chi Q G, Chen Q G, Lei Q Q 2020 Chem. Eng. J. 389 124443Google Scholar

    [44]

    Cheng L, Liu K, Gao H Y, Fan Z M, Takesue N, Deng H M, Zhang H B, Hu Y M, Tan H, Yan Z L, Liu Y 2022 Chem. Eng. J. 435 135064Google Scholar

    [45]

    Guo Y T, Wu S H, Liu S H, Xu J, Pawlikowska E, Szafran M, Rydosz A, Gao F 2022 Mater. Lett. 306 130910Google Scholar

    [46]

    Chen J, Li Y, Wang Y F, Dong J F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2020 Compos. Sci. Technol. 186 107912Google Scholar

    [47]

    迟庆国, 陈辰, 张月, 张昌海, 王暄, 雷清泉 2017 高电压技术 43 2204Google Scholar

    Chi Q G, Chen C, Zhang Y, Zhang C H, Wang X, Lei Q Q 2017 High Volt. Eng. 43 2204Google Scholar

    [48]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [49]

    Marwat M A, Xie B, Zhu Y W, Fan P Y, Ma W G, Liu H M, Ashtar M, Xiao J Z, Salamon D, Samart C, Zhang H B 2019 Composites Part A 121 115Google Scholar

    [50]

    Marwat M A, Yasar M, Ma W G, Fan P Y, Liu K, Lu D J, Tian Y, Samart C, Ye B H, Zhang H B 2020 ACS Appl. Energy Mater. 3 6591Google Scholar

    [51]

    Yin L, Zhao H, Wang Y Z, Zhao S N, Ding X Y, Wang Q, Wei X P, Miao Z Y, Yang F, Yin X Q, Bai J B 2022 ACS Appl. Mater. Interfaces 14 39311Google Scholar

    [52]

    Qiu J Y, Weng L, Zhang X R, Su Y 2022 IET Nanodielectrics 5 85Google Scholar

    [53]

    Zhang Y, Zhang T D, Liu L Z, Chi Q G, Zhang C H, Chen Q J, Cui Y, Wang X, Lei Q Q 2018 J. Phys.C122 1500Google Scholar

    [54]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 271606292Google Scholar

    [55]

    Wang H, Wang Y, Wang B Y, Li M Q, Li M T, Wang F, Li C L, Diao C L, Lou H, Zheng H W 2022 ACS Appl. Mater. Interfaces 14 55130Google Scholar

    [56]

    Wang Z Z, Feng Z P, Tang H S, Wang J H, Cai Z M, Bi K, Hao Y A 2022 ACS Appl. Mater. Interfaces 14 42513Google Scholar

    [57]

    Li W X, Yang T N, Liu C S, Huang Y H, Chen C X, Pan H, Xie G Z, Tai H L, Jinag Y D, Wu Y J, Kang Z, Chen L Q, Su Y J, Hong Z J 2022 Adv Sci. 9 2105550Google Scholar

    [58]

    Shen Z H, Wang J J, Jiang J Y, Huang S R, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [59]

    Shen Y, Hua Y H, Chen W W, Wang J J, Guan Y H, Dua J W, Zhang X, Ma J, Lia M, Lin Y H, Chen L Q, Nan C W 2015 Nano Energy 18 176Google Scholar

    [60]

    Zhang K Y, Ma Z Y, Fu Q, Deng H 2022 Mater. Today Energy 29 101093Google Scholar

    [61]

    Xie H R, Wang L, Gao X, Lou H, Liu L H, Zhang D 2020 ACS Omega 5 32660Google Scholar

    [62]

    Zhang Y J, Yang H B, Dang Z N, Zhan S L, Sun C, Hu G L, Lin Y, Yuan Q B 2020 ACS Appl. Mater. Interfaces 12 22137Google Scholar

    [63]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Energy Storage Mater. 18 213Google Scholar

    [64]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [65]

    Wang Y F, Li Y, Wang L X, Yuan Q B, Chen J, Niu Y J, Xu X W, Wang Q, Wang H 2020 Energy Storage Mater. 24 626Google Scholar

    [66]

    Zhang Y, Chi Q G, Liu L Z, Zhang T D, Zhang T D, Zhang C H, Chen Q G, Wang X, Lei Q Q 2018 ACS Appl. Energy Mater. 1 6320Google Scholar

    [67]

    Sun L, Shi Z C, He B L, Wang H L, Liu S, Huang M H, Shi J, Dastan D, Wang H 2021 Adv. Funct. Mater. 31 2100280Google Scholar

    [68]

    Cui Y, Zhang T D, Feng Y, Zhang C H, Chi Q G, Zhang Y Q, Chen Q G, Wang X, Lei Q Q 2019 Composites Part B 177 107429Google Scholar

    [69]

    Lin B, Chen G D, He F A, Li Y, Yang Y, Shi B, Feng F R, Chen S Y, Lam K H 2023 Diamond Relat. Mater. 131 109556Google Scholar

    [70]

    Hu J, Zhang S F, Tang B T 2021 Energy Storage Mater. 37 530Google Scholar

    [71]

    Jiang J, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [72]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [73]

    Hassan Y A, Hu H L 2020 Composites Part A 138 106064Google Scholar

    [74]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

    [75]

    Wan B Q, Zheng M S, Yang X, Dong X D, Li Y C, Mai Y W, Chen G, Zha J W 2023 Energy Environ. Mater. 6 e12427Google Scholar

  • [1] Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu. Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films. Acta Physica Sinica, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Zheng Ming, Yang Jian, Zhang Yi-Xiao, Guan Peng-Fei, Cheng Ao, Fan He-Liang. Energy storage and photoluminescence properties of Sm3+-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 multifunctional ceramics. Acta Physica Sinica, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [4] Yin Jing-Wei, Ma Ding-Yi, Zhang Yu-Xiang, Sheng Xue-Li. Review on modeling polar sea-ice acoustics waveguide. Acta Physica Sinica, 2022, 71(8): 084301. doi: 10.7498/aps.71.20211950
    [5] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [7] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [8] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [9] Lan Shun, Pan Hao, Lin Yuan-Hua. Fabrication and applications of flexible inorganic ferroelectric thin films. Acta Physica Sinica, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [10] Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou. Research progress of self-powered flexible biomedical sensors. Acta Physica Sinica, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [11] You Jia-Xue,  Wang Jin-Cheng,  Wang Li-Lin,  Wang Zhi-Jun,  Li Jun-Jie,  Lin Xin. Recent progress of solidification of suspensions. Acta Physica Sinica, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [12] Jia Ning,  Wang Shan-Peng,  Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals. Acta Physica Sinica, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [13] Xiong Kai-Xin, Xi Kun, Bao Lei, Zhang Zhong-Liang, Tan Zhi-Jie. Molecular dynamics simulations on DNA flexibility: a comparative study of Amber bsc1 and bsc0 force fields. Acta Physica Sinica, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [14] Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin. Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method. Acta Physica Sinica, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [15] Liu Hai-Wen, Zhu Shuang-Shuang, Wen Pin, Qin Feng, Ren Bao-Ping, Xiao Xiang, Hou Xin-Yu. A flexible dual-band metamaterial based on hairpin split-ring resonators. Acta Physica Sinica, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [16] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [17] Dong Jing, Chai Yu-Hua, Zhao Yue-Zhi, Shi Wei-Wei, Guo Yu-Xiu, Yi Ming-Dong, Xie Ling-Hai, Huang Wei. The progress of flexible organic field-effect transistors. Acta Physica Sinica, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [18] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [19] Ding Pei, Zhou Qiang, Hu Wei-Qin, Cai Gen-Wang, Liang Er-Jun. Selectable electromagnetic response modes and negative refraction in rectangular dielectric metamaterials. Acta Physica Sinica, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [20] Han Yong, Wang Ti-Jian, Rao Rui-Zhong, Wang Ying-Jian. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
Metrics
  • Abstract views:  3198
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2023
  • Accepted Date:  24 June 2023
  • Available Online:  15 January 2024
  • Published Online:  20 January 2024

/

返回文章
返回