Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern

Xu Jie Feng Ze-Hua Liu Bing-Ye Zhu Xin-Yi Dai Jin-Fei Dong Hua Wu Zhao-Xin

Citation:

Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern

Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin
PDF
HTML
Get Citation
  • The preparation of traditional organic-inorganic lead-halogen hybrid perovskite solar cells often requires strict nitrogen glove box conditions, thus hindering their industrial scalability. This study develops a large-area perovskite film formation process and designs a novel device structure to achieve a dual enhancement of module device efficiency and stability in a high humidity air environment (55%). High-quality perovskite thin films are successfully prepared by vacuum extraction in ambient air, followed by a double-end low-temperature photopolymerization process utilizing acrylate monomer molecules for inner encapsulation modification of the freshly formed perovskite thin films. The influences of these techniques on the photoelectric characteristics of perovskite thin films and devices are investigated. The results indicate that uniform and dense perovskite films can be achieved in ambient air with a pumping time of 60 s. By adjusting the concentration of ethylene glycol dimethacrylate monomer molecules used in the low-temperature photopolymerization process, the surface defects on the perovskite film can be effectively controlled. The optimal concentration of 1 mg/mL results in perovskite film with optimal morphology and fluorescence intensity. Furthermore, rigid module device and flexible module device (effective area: 18 cm²), based on the polymer inner encapsulation, demonstrate outstanding outdoor photoelectric conversion efficiencies of 19.51% and 18.17%, respectively (with the highest indoor low-light conversion efficiencies of 34.5% and 30.2%, respectively). Notably, the untreated flexible device exhibits a significant decline in photoelectric conversion efficiency, falling below 50% of the initial value after one month of exposure to air. In contrast, device incorporating the polymer inner encapsulation layer maintains over 90% of their original efficiency, highlighting their excellent humidity resistance stability. Moreover, the polymer encapsulation layer also greatly improves the bending stability of the flexible device. This research paves the way for industrial-scale producing perovskite solar cells and addressing the challenges associated with humidity and large-area fabrication. The findings contribute to advancing perovskite solar cell technology and offering a pathway for high-efficiency and stable devices suitable for practical applications.
      Corresponding author: Xu Jie, jiexu@xauat.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2023-JC-QN-0693), the National Natural Science Foundation of China (Grant No. 12004298), the China Postdoctoral Science Foundation (Grant No. 2020M673399), and the Innovation and Entrepreneurship Training Program for College Students of Xi’an University of Architecture and Technology, China (Grant No. X2023110).
    [1]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [2]

    Wolf S D, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [5]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H 2013 Adv. Mater. 25 3227Google Scholar

    [6]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html

    [7]

    Ding Y, Ding B, Kanda H, Usiobo O J, Gallet T, Yang Z H, Liu Y, Huang H, Sheng J, Liu C, Yang Y, Queloz V I E, Zhang X F, Audinot J N, Redinger A, Dang W, Mosconic E, Luo W, Angelis F D, Wang M K, Dörflinger P, Armer M, Schmid V, Wang R, Brooks K G, Wu J H, Dyakonov V, Yang G J, Dai S Y, Dyson P J, Nazeeruddin M K 2022 Nat. Nanotechnol. 17 598Google Scholar

    [8]

    Rana P J S, Febriansyah B, Koh T M, Muhammad B T, Salim T, Hooper T J N, Kanwat A, Ghosh B, Kajal P, Lew J H, Aw Y C, Yantara N, Bruno A, Pullarkat S A, Ager J W, Leong W L, Mhaisalkar S G, Mathews N 2022 Adv. Funct. Mater. 32 2113026Google Scholar

    [9]

    Wang Y, Yang H, Zhang K, Tao M Q, Li M Z, Song Y L 2022 ACS Energy Lett. 7 3646Google Scholar

    [10]

    Zhang K, Wang Y, Tao M Q, Guo L T, Yang Y R, Shao J Y, Zhang Y Y, Wang F Y, Song Y L 2023 Adv. Mater. 35 2211593Google Scholar

    [11]

    Brooks K G, Nazeeruddin M K 2021 Adv. Energy Mater. 11 2101149Google Scholar

    [12]

    Castriotta L A, Zendehdel M, Nia N Y, Leonardi E, Löfffer M, Paci B, Generosi A, Rellinghaus B, Carlo A D 2022 Adv. Energy Mater. 12 2103420Google Scholar

    [13]

    Babayigit A, Haen J D, Boyen H G, Conings B 2018 Joule 2 1205Google Scholar

    [14]

    Konstantakou M, Perganti D, Falaras P, Stergiopoulos T 2017 Crystals 7 291Google Scholar

    [15]

    Gu L, Wang S, Fang X, Liu D, Xu Y, Yuan N, Ding J 2020 ACS Appl. Mater. Interfaces 12 33870Google Scholar

    [16]

    Jang G, Kwon H C, Ma S, Yun S C, Yang H, Moon J 2019 Adv. Energy Mater. 9 1901719Google Scholar

    [17]

    Gu L L, Fei F, Xu Y B, Wang S B, Yuan N Y, Ding J N 2022 ACS Appl. Mater. Interfaces 14 2949Google Scholar

    [18]

    Li H Y, Bu T L, Li J, Lin Z P, Pan J Y, Li Q H, Zhang X L, Ku Z L, Cheng Y B, Huang F Z 2021 ACS Appl. Mater. Interfaces 13 18724Google Scholar

    [19]

    Vesce L, Stefanelli M, Herterich J P, Castriotta L A, Kohlstädt M, Würfel U, Carlo A D 2021 Solar RRL 5 2100073Google Scholar

    [20]

    Xu J, Dong H, Xi J, Yang Y, Yu Y, Ma L, Chen J B, Jiao B, Hou X, Li J R, Wu Z X 2020 Nano Energy 75 104940Google Scholar

    [21]

    Xu J, Xi J, Dong H, Ahn N, Zhu Z L, Chen J B, Li P Z, Zhu X Y, Dai J F, Hu Z Y, Jiao B, Hou X, Li J R, Wu Z X 2021 Nano Energy 88 106286Google Scholar

    [22]

    Zhu X Y, Dong H, Chen J B, Xu J, Li Z J, Yuan F, Dai J F, Jiao B, Hou X, Xi J, Wu Z X 2022 Adv. Funct. Mater. 32 2202408Google Scholar

  • 图 1  (a) SEM截面形貌图; (b) DEGDMA单体在钙钛矿薄膜上的光聚合过程

    Figure 1.  (a) SEM morphology of the cross-section for device; (b) polymerization process of DEGDMA on the perovskite fIlm after light-initiated process.

    图 2  空气中真空萃取制备的钙钛矿薄膜的表面SEM和AFM形貌图 (a), (e) 0 mg/mL; (b), (f) 1.0 mg/mL; (c), (g) 2.0 mg/mL; (d), (h) 5.0 mg/mL

    Figure 2.  SEM and AFM morphologies of perovskite films prepared by vacuuming in air with different weight concentrations: (a), (e) 0 mg/mL; (b), (f) 1.0 mg/mL; (c), (g) 2.0 mg/mL; (d), (h) 5.0 mg/mL.

    图 3  大气环境中真空抽气法制备的钙钛矿薄膜PEGDMA处理前后的(a) XRD图和接触角, 以及(b) Pb元素的XPS特征峰

    Figure 3.  Perovskite films prepared in atmospheric environment with and without PEGDMA: (a) XRD patterns and contact angles; (b) XPS characteristic peak of Pb.

    图 4  PEGDMA聚合物夹层处理前后钙钛矿表面的(a) 吸收光谱及(b) 荧光发射光谱; (c) 单电子器件电流-电压曲线及(d)标准器件电化学阻抗谱

    Figure 4.  (a) Absorption spectrum and (b) fluorescence emission spectrum of perovskite films with polymer layer modified; (c) dark J-V curves of electron-only devices and (d) Nyquist plots of devices.

    图 5  (a) 钙钛矿模组实物图及(b)激光刻蚀结构图

    Figure 5.  (a) Photo and (b) cross section structure of laser etching for the perovskite module.

    图 6  (a)刚性和(b)柔性钙钛矿模组器件的室外J-V曲线图

    Figure 6.  The J-V curves of rigid (a) and flexible (b) perovskite module with or without PEGDMA.

    图 7  (a)室内LED白光的光谱曲线及(b)刚性和(c)柔性钙钛矿模组器件的室内弱光J-V曲线

    Figure 7.  (a) Illumination spectra of white LED and J-V curves of (b) rigid and (c) flexible perovskite module with or without PEGDMA under white LED.

    图 8  柔性PEN导电层方阻随退火时间(150 ℃)的变化曲

    Figure 8.  Curve of square resistance for flexible PEN with annealing time (150 ℃).

    图 9  柔性钙钛矿模组的器件湿度稳定性(a)和耐弯折稳定性(b)

    Figure 9.  Humidity (a) and bending stability (b) of flexible perovskite module.

    图 10  钙钛矿模组器件的水侵蚀研究及铅泄漏评估

    Figure 10.  Water erosion study and lead leakage assessment of perovskite module.

    表 1  聚合物层修饰的刚性和柔性模组器件室外光电参数比较

    Table 1.  Comparison of optoelectronic parameters of polymer layer modified rigid and flexible perovskite module devices.

    器件 JSC/(mA·cm–2) VOC/V FF/% PCE/%
    Glass/ITO-控制组 (in air) 3.84 6.62 73.6 18.71
    Glass/ITO-PEGDMA (in air) 3.94 6.70 73.9 19.51
    Glass/ITO-PEGDMA (in N2) 4.02 6.65 73.3 19.59
    PEN/ITO-控制组 (in air) 3.81 6.51 65.6 16.26
    PEN/ITO-PEGDMA (in air) 3.83 6.60 71.9 18.17
    PEN/ITO-PEGDMA (in N2) 3.89 6.63 71.3 18.39
    DownLoad: CSV
  • [1]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [2]

    Wolf S D, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [5]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H 2013 Adv. Mater. 25 3227Google Scholar

    [6]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html

    [7]

    Ding Y, Ding B, Kanda H, Usiobo O J, Gallet T, Yang Z H, Liu Y, Huang H, Sheng J, Liu C, Yang Y, Queloz V I E, Zhang X F, Audinot J N, Redinger A, Dang W, Mosconic E, Luo W, Angelis F D, Wang M K, Dörflinger P, Armer M, Schmid V, Wang R, Brooks K G, Wu J H, Dyakonov V, Yang G J, Dai S Y, Dyson P J, Nazeeruddin M K 2022 Nat. Nanotechnol. 17 598Google Scholar

    [8]

    Rana P J S, Febriansyah B, Koh T M, Muhammad B T, Salim T, Hooper T J N, Kanwat A, Ghosh B, Kajal P, Lew J H, Aw Y C, Yantara N, Bruno A, Pullarkat S A, Ager J W, Leong W L, Mhaisalkar S G, Mathews N 2022 Adv. Funct. Mater. 32 2113026Google Scholar

    [9]

    Wang Y, Yang H, Zhang K, Tao M Q, Li M Z, Song Y L 2022 ACS Energy Lett. 7 3646Google Scholar

    [10]

    Zhang K, Wang Y, Tao M Q, Guo L T, Yang Y R, Shao J Y, Zhang Y Y, Wang F Y, Song Y L 2023 Adv. Mater. 35 2211593Google Scholar

    [11]

    Brooks K G, Nazeeruddin M K 2021 Adv. Energy Mater. 11 2101149Google Scholar

    [12]

    Castriotta L A, Zendehdel M, Nia N Y, Leonardi E, Löfffer M, Paci B, Generosi A, Rellinghaus B, Carlo A D 2022 Adv. Energy Mater. 12 2103420Google Scholar

    [13]

    Babayigit A, Haen J D, Boyen H G, Conings B 2018 Joule 2 1205Google Scholar

    [14]

    Konstantakou M, Perganti D, Falaras P, Stergiopoulos T 2017 Crystals 7 291Google Scholar

    [15]

    Gu L, Wang S, Fang X, Liu D, Xu Y, Yuan N, Ding J 2020 ACS Appl. Mater. Interfaces 12 33870Google Scholar

    [16]

    Jang G, Kwon H C, Ma S, Yun S C, Yang H, Moon J 2019 Adv. Energy Mater. 9 1901719Google Scholar

    [17]

    Gu L L, Fei F, Xu Y B, Wang S B, Yuan N Y, Ding J N 2022 ACS Appl. Mater. Interfaces 14 2949Google Scholar

    [18]

    Li H Y, Bu T L, Li J, Lin Z P, Pan J Y, Li Q H, Zhang X L, Ku Z L, Cheng Y B, Huang F Z 2021 ACS Appl. Mater. Interfaces 13 18724Google Scholar

    [19]

    Vesce L, Stefanelli M, Herterich J P, Castriotta L A, Kohlstädt M, Würfel U, Carlo A D 2021 Solar RRL 5 2100073Google Scholar

    [20]

    Xu J, Dong H, Xi J, Yang Y, Yu Y, Ma L, Chen J B, Jiao B, Hou X, Li J R, Wu Z X 2020 Nano Energy 75 104940Google Scholar

    [21]

    Xu J, Xi J, Dong H, Ahn N, Zhu Z L, Chen J B, Li P Z, Zhu X Y, Dai J F, Hu Z Y, Jiao B, Hou X, Li J R, Wu Z X 2021 Nano Energy 88 106286Google Scholar

    [22]

    Zhu X Y, Dong H, Chen J B, Xu J, Li Z J, Yuan F, Dai J F, Jiao B, Hou X, Xi J, Wu Z X 2022 Adv. Funct. Mater. 32 2202408Google Scholar

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [4] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [11] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  2808
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2023
  • Accepted Date:  12 September 2023
  • Available Online:  15 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回