Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

progress in electron-transport materials in application of perovskite solar cells

Ting Hung-Kit Ni Lu Ma Sheng-Bo Ma Ying-Zhuang Xiao Li-Xin Chen Zhi-Jian

Citation:

progress in electron-transport materials in application of perovskite solar cells

Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ever since the first organic-inorganic hybrid halogen perovskite solar cell was first used as a photo-voltaic material in 2009, reports on this type of solar cell have grown exponentially over the years. Up till May 2014, the photo-energy conversion efficiency of the perovskite solar cell have already achieved an efficiency approaching 20%. Surpassing the efficiency achieved by organic and dye synthesized solar cell, the perovskite solar cell is in good hope of reaching the efficiency compatible with that of mono-crystalline silicon solar cell, thus it is going to be the star in photo-voltaic industry. In a perovskite solar cell, the film-formation and electron-mobility in the electron transfer layer can dramatically affect its efficiency and life-span. Especially in the up-right structured device, the mesoscopic structures of the electron-transfer layer will directly influence the growth of the perovskite layer. The present researches of electron transport materials mainly focus on three aspects: (1) How to improve the instability in mesoporous TiO2-mesosuperstructured solar cells, that arises from light-induced desorption of surface-adsorbed oxygen. (2) How to obtain TiO2 or other electron transport materials at low temperature (sub 150 ℃) in order to be applicatable in flexible devices. (3) How to substitute the mesoporous TiO2 or compact TiO2 transport layer by organic or composite materials. This article devides the materials that are used to make the electron-transfer layer into three distinct groups according to their chemical composition: i.e. metal oxides, organic small molecules, and composite materials, and introduces about the role they play and the recent development of them in constructing the perovskite solar cell.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177020, 11121091).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graätzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graätzel M 2013 Nature 499 316

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Service R F 2014 Science 344 458

    [8]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    Grinberg I, West D V, Torres M, Gou1 G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [12]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K 2003 Solid State Commun. 127 619

    [13]

    Wu S K, Wang P F 2010 Organic Electronics (Beijing: Chemical industry press) pp32-36 (in Chinese) [吴世康, 汪鹏飞 2010 有机电子学概论 (北京: 化学工业出版社)第32–35页]

    [14]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [15]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [18]

    Xiao Z G, Bi C, Shao Y C, Dong Q F, Wang Q, Yuan Y B, Wang C G, Gao Y L, Huang JS 2014 Energy Environ. Sci. 7 2619

    [19]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang JS 2014 Adv. Mater. 26 6503

    [20]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [21]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok II S 2014 Nat. Mater. 13 897

    [22]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [23]

    Gill W D 1972 J. Appl. Phys. 43 5033

    [24]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [25]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [26]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [27]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [28]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [29]

    Aharon S, Gamliel S, El Cohen B, Etgar L 2014 PCCP 16 10512

    [30]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [31]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Graätzel M 2014 Nano Lett. 14 2591

    [32]

    Schwanitz K, Weiler U, Hunger R, Mayer T, Jaegermann W 2007 J. Phys. Chem. C 111 849

    [33]

    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea E M, Palomares E 2008 Inorg. Chim. Acta 361 684

    [34]

    Henderson M A, Epling W S, Perkins C L, Peden C H F, Diebold U 1999 J. Phys. Chem. B 103 5328

    [35]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat.Commun. 4 2885

    [36]

    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Graätzel M 1998 Nature 395 583

    [37]

    Apgar B A, Martin L W 2014 Cryst. Growth Des. 14 1981

    [38]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A-Chem. 161 205

    [39]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [40]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [41]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [42]

    Conings B, Baeten L, Jacobs T, Dera R, D'Haen J, Manca J, Boyen H G 2014 APL Mater. 2 081505

    [43]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

    [44]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [45]

    Small C E, Chen S, Subbiah J, Amb C M, Tsang S W, Lai T H, Reynolds J R, So F 2012 Nat. Photonics 6 115

    [46]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Graätzel M, Park N G 2013 Nano Lett. 13 2412

    [47]

    Dharani S, Mulmudi H K, Yantara N, Trang P T T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675

    [48]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [49]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [50]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [51]

    Keis K, Magnusson E, Lindström H, Lindquist S, Hagfeldt A A 2002 Sol. Energy Mater. Sol. Cells 73 51

    [52]

    Goncalves A S, Goes M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagidad S, Nogueirac A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [53]

    Son D Y, Im J H, Kim H S, Park N G 2014 J. Phy. Chem. C 118 16567

    [54]

    Kumar M H, Yantara N, Dharani S, Graätzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [55]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133

    [56]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [57]

    Zheng H D, Tachibana Y, Kalantar-zadeh K 2010 Langmuir 26 19148

    [58]

    Mahmood K, Swain BS, Kirmania A R, Amassian A 2014 J. Mater. Chem. A DOI: 10.1039/C4TA04883K

    [59]

    Sakai N, Miyasaka T, Murakami T N 2013 J. Phys. Chem. C 117 10949

    [60]

    Oh L S, Kim D H, Lee J A, Shin S S, Lee J W, Park I J, Ko M J, Park N G, Pyo S G, Hong K S, Kim J Y 2014 J. Phys. Chem. C 118 22991

    [61]

    Yong S M, Nikolay T, Ahn B T, Kim D K 2013 J. Alloys Compd. 547 113

    [62]

    Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F, Fleming R M 1995 Appl. Phys. Lett. 67 121

    [63]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Appl. Phys. Lett. 82 4581

    [64]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [65]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [66]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [67]

    Gao Z, Qu B, Xiao L X, Chen Z J, Zhang L P, Gong Q H 2014 Appl. Phys. Lett. 104 103301

    [68]

    Qu B, Gao Z, Yang H S, Xiao L X, Chen Z J, Gong Q H 2014 Appl. Phys. Lett. 104 043305

    [69]

    2006 Nano Lett 6 755

    [70]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [71]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032.

    [72]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Graätzel M, Han H W 2014 Science 345 295

    [73]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S 2014 ChemPhysChem 15 1062

    [74]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K-Y, Snaith H J 2013 Nano Lett. 1 3

    [75]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [76]

    Wang J T-W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J 2014 Nano Lett. 14 724

    [77]

    Miyauchi M 2007 J. Phys. Chem. C 111 12440

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graätzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graätzel M 2013 Nature 499 316

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Service R F 2014 Science 344 458

    [8]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    Grinberg I, West D V, Torres M, Gou1 G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [12]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K 2003 Solid State Commun. 127 619

    [13]

    Wu S K, Wang P F 2010 Organic Electronics (Beijing: Chemical industry press) pp32-36 (in Chinese) [吴世康, 汪鹏飞 2010 有机电子学概论 (北京: 化学工业出版社)第32–35页]

    [14]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [15]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [18]

    Xiao Z G, Bi C, Shao Y C, Dong Q F, Wang Q, Yuan Y B, Wang C G, Gao Y L, Huang JS 2014 Energy Environ. Sci. 7 2619

    [19]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang JS 2014 Adv. Mater. 26 6503

    [20]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [21]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok II S 2014 Nat. Mater. 13 897

    [22]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [23]

    Gill W D 1972 J. Appl. Phys. 43 5033

    [24]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [25]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [26]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [27]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [28]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [29]

    Aharon S, Gamliel S, El Cohen B, Etgar L 2014 PCCP 16 10512

    [30]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [31]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Graätzel M 2014 Nano Lett. 14 2591

    [32]

    Schwanitz K, Weiler U, Hunger R, Mayer T, Jaegermann W 2007 J. Phys. Chem. C 111 849

    [33]

    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea E M, Palomares E 2008 Inorg. Chim. Acta 361 684

    [34]

    Henderson M A, Epling W S, Perkins C L, Peden C H F, Diebold U 1999 J. Phys. Chem. B 103 5328

    [35]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat.Commun. 4 2885

    [36]

    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Graätzel M 1998 Nature 395 583

    [37]

    Apgar B A, Martin L W 2014 Cryst. Growth Des. 14 1981

    [38]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A-Chem. 161 205

    [39]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [40]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [41]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [42]

    Conings B, Baeten L, Jacobs T, Dera R, D'Haen J, Manca J, Boyen H G 2014 APL Mater. 2 081505

    [43]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

    [44]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [45]

    Small C E, Chen S, Subbiah J, Amb C M, Tsang S W, Lai T H, Reynolds J R, So F 2012 Nat. Photonics 6 115

    [46]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Graätzel M, Park N G 2013 Nano Lett. 13 2412

    [47]

    Dharani S, Mulmudi H K, Yantara N, Trang P T T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675

    [48]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [49]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [50]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [51]

    Keis K, Magnusson E, Lindström H, Lindquist S, Hagfeldt A A 2002 Sol. Energy Mater. Sol. Cells 73 51

    [52]

    Goncalves A S, Goes M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagidad S, Nogueirac A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [53]

    Son D Y, Im J H, Kim H S, Park N G 2014 J. Phy. Chem. C 118 16567

    [54]

    Kumar M H, Yantara N, Dharani S, Graätzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [55]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133

    [56]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [57]

    Zheng H D, Tachibana Y, Kalantar-zadeh K 2010 Langmuir 26 19148

    [58]

    Mahmood K, Swain BS, Kirmania A R, Amassian A 2014 J. Mater. Chem. A DOI: 10.1039/C4TA04883K

    [59]

    Sakai N, Miyasaka T, Murakami T N 2013 J. Phys. Chem. C 117 10949

    [60]

    Oh L S, Kim D H, Lee J A, Shin S S, Lee J W, Park I J, Ko M J, Park N G, Pyo S G, Hong K S, Kim J Y 2014 J. Phys. Chem. C 118 22991

    [61]

    Yong S M, Nikolay T, Ahn B T, Kim D K 2013 J. Alloys Compd. 547 113

    [62]

    Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F, Fleming R M 1995 Appl. Phys. Lett. 67 121

    [63]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Appl. Phys. Lett. 82 4581

    [64]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [65]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [66]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [67]

    Gao Z, Qu B, Xiao L X, Chen Z J, Zhang L P, Gong Q H 2014 Appl. Phys. Lett. 104 103301

    [68]

    Qu B, Gao Z, Yang H S, Xiao L X, Chen Z J, Gong Q H 2014 Appl. Phys. Lett. 104 043305

    [69]

    2006 Nano Lett 6 755

    [70]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [71]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032.

    [72]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Graätzel M, Han H W 2014 Science 345 295

    [73]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S 2014 ChemPhysChem 15 1062

    [74]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K-Y, Snaith H J 2013 Nano Lett. 1 3

    [75]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [76]

    Wang J T-W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J 2014 Nano Lett. 14 724

    [77]

    Miyauchi M 2007 J. Phys. Chem. C 111 12440

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [8] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [18] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [20] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
Metrics
  • Abstract views:  15440
  • PDF Downloads:  4839
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2014
  • Accepted Date:  18 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回